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ABSTRACT 

The primary objective of this thesis is to study change detection problems and 

their applications in longitudinal and functional data. In particularly, two types of change 

detection problems for longitudinal data are considered. The first type of problems is on-

line change detection for longitudinal data, where we focus on detecting changes within a 

single longitudinal data stream that arrive into the system sequentially. The other type of 

change detection problems that will be studied in this thesis concerns about detecting 

outliers from a set of longitudinal or functional data. 

For the first type of change detection problems, we study two novel engineering 

applications. The first application is studied in Chapter 2, focusing on the on-line steady 

state detection. The goal is to identify the transition point between transient period and 

steady state period. We propose a novel on-line steady state detection algorithm based on 

a multiple change-point state space formulation and the sequential Monte Carlo methods. 

Compared to other existing methods, the main contribution of this work is its 

significantly improved computational efficiency by the use of the Rao-Blackwellization 

method, making it a much preferred method for many on-line applications where quick 

processing of the data in real time is critical. Additionally, the proposed method is shown 

to have more robust detection performance than existing methods when dealing with 

different types of signals. 

In Chapter 3, we study the second application of change detection problems, 

which focuses on statistical process control for the short-run process. We propose new 

methods under the Bayesian framework to track the process mean and detect on-line if 

the process mean is beyond certain control limits or specification limits. Our model 
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modifies the original model proposed by Tsiamyrtzis and Hawkins (2005) and can be 

more flexible in handling linear trends of the process. Compared to the method proposed 

by Tsiamyrtzis and Hawkins (2005), the advantages of our method are two-folds. Firstly, 

the performance of our method is more robust to parameter misspecification and requires 

less knowledge of the process to make accurate estimations. Secondly, the resulted 

posterior inference of the process mean has a significantly reduced number of mixtures, 

leading to substantial saving of computational and memory cost.   

The other type of change detection problems studied in this thesis concentrates on 

analysis of a set of longitudinal or functional data, which is discussed in Chapter 4. In 

particular, we focus on the outlier detection problem for functional data, where the outlier 

is defined as a curve that is generated from a different process compared to normal 

curves. Based on the use of the concept of data depth, we propose two new depth notions, 

the weighted band depth and the localized weighted band depth for detecting various 

outliers. Our main contribution is proposing a new idea called the shape distance, which 

makes our methods particularly effective in detecting outliers that have different shapes 

from normal curves.  
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PUBLIC ABSTRACT 

In real practical engineering applications, we are often encountered with signals 

that consist of repeated measurements on the same object over different time points. Such 

signals are called the longitudinal signals. For example, in prognosis of some in-service 

units, the continuous change of their health status over time is a longitudinal trend; for 

some cutting tools, their gradual failure (tool wear) due to regular operations can be also 

considered as longitudinal signals. For such longitudinal signals, to timely detect their 

critical changes or occurrences of failure and anomalies is important to us since we can 

make corrective actions as quickly as possible. The main goal of this thesis is to introduce 

some new methods that can make efficient and robust detection on such 

change/anomalies of longitudinal signals observed in engineering applications. 
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CHAPTER 1. INTRODUCTION 

Many engineering applications concern about longitudinal data. For example, in 

prognosis of the in-service units, the change of health status of the units over time is a 

longitudinal signal, which is also called the degradation signal in the engineering area. In 

process monitoring and control, usually the signal has to undergo a transient period 

before entering a steady period where its distribution becomes stable. Such signal also 

forms a longitudinal trend.  

Longitudinal data can be also considered as a type of functional data (Ramsay and 

Silverman, 2005). In this thesis, we focus on change detection problems and its 

applications for longitudinal and functional data. We consider two types of change 

detection problems for longitudinal data. The first type of problems is on-line change 

detection for longitudinal data, where we consider on-line algorithms to detect changes in 

trend within a single longitudinal data stream with data observed sequentially. Recently, 

general on-line change detection for data with multiple change points is studied in 

statistics literature based on Bayesian methods. For example, Chopin (2007) studied the 

problem of on-line detecting multiple change-points in time series data under a Bayesian 

framework, and without any prior knowledge of the exact number of change-points. 

Fearnhead and Liu (2007) also developed an efficient Bayesian on-line inference method 

for multiple change-points problems. In this thesis, we study two novel engineering 

applications of on-line change detection. The first application is studied in Chapter 2, 

focusing on the on-line steady state detection, where the transition point between 

transient period and steady state period needs to be identified. The second application is 

in statistical process control for the short-run processes, which is studied in Chapter 3. 
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The goal is to track the process mean and detect if the process mean is beyond certain 

control limits or specification limits. The other type of change detection problems that 

will be studied in this thesis concerns about a set of longitudinal or functional data, which 

is discussed in Chapter 4. In particularly, we focus on developing useful methods based 

on the concept of data depth for detecting various outliers that are coming from a 

different process compared to normal curves. In the following subsections, we provide 

more information on the three problems studied in this thesis.  

1.1 On-Line Steady State Detection 

Steady state of a system in many applications is one of the most important 

requirements to evaluate the performance of the process or to trigger the next actions in 

the process control. Timely detection of whether a data stream reaches the steady state 

(i.e., mean and variance unchanged) has been found critical in various fields, such as 

process control (Mahuli et al., 1992; Cao and Rhinehart, 1995; Jiang et al., 2003; Wu et 

al., 2013), data reconciliation (Narasimhan et al., 1986; Bagajewicz and Jiang, 2000; Bhat 

and Saraf, 2004; Korbel et al., 2014), fault detection and diagnosis (FDD) (Kim et al., 

2008), and process optimization (Mhamdi et al., 2010). We can categorize the steady 

state detection problem into two types: off-line and on-line. Most of the well-developed 

methods in the literature correspond to the off-line detection problems arising from 

discrete-event simulations, where it is usually very difficult to start the simulation 

directly from the steady state because the steady state of the system is typically unknown. 

Data collected during the transient period (or warm-up period) prior to the steady state 

causes estimation bias, which is called the initialization bias, in the steady state 

parameter estimation (Kelton and Law, 1983; Gallagher et al., 1996; Fishman, 2001; 
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Hoad et al., 2010). To solve this problem, usually the simulation is first run long enough 

to guarantee the simulation output has reached the steady state. Then off-line methods are 

typically used to identify the starting point of the steady state in the simulation outputs so 

that the data from the transient period can be removed. These methods can be further 

classified into five different types (Robinson, 2007): graphical methods, heuristic 

approaches, statistical methods, initialization bias tests, and hybrid methods.  

Compared to the off-line methods which have been extensively investigated in the 

simulation literature, studies for on-line steady state detection are limited. The main 

challenge of on-line detection is that it has to be done in real-time, which justifies the 

need for detection procedures to timely update estimations as the latest observations 

become available. The existing on-line methods typically utilize a moving data window, 

based on which some test statistics are developed to decide if the signal has entered the 

steady state. Examples of such methods include polynomial interpolation test (PIT) 

(Savitzky and Golay, 1964; Roux et al., 2008), variance ratio test (VRT) (Crow et al., 

1960; Cao and Rhinehart, 1995), slope detection method (SDM) (Holly et al., 1989; 

Bethea and Rhinehart, 1991; Wu et al., 2013), and t-test (Narasimhan et al., 1987). 

However, the performance of all these methods is highly dependent on the selection of 

the data window size. Too small or too large the size may significantly increase either the 

false alarm rates (FAR) or detection delays. Also, the appropriate window size is very 

sensitive to noise levels as well as types of signals. Usually one specific window size 

cannot perform consistently well for various types of signals with different noise levels. 

Therefore, it is urgent to develop methods with more flexibility and robustness to handle 

various situations.  
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Naturally the on-line steady state detection problem can be approached from the 

Bayesian perspective, where the prior information of model parameters and transition 

point to the steady state, combined with the latest observations, are used to dynamically 

update the knowledge of the current state of the process. The main disadvantage of the 

Bayesian method is that it usually leads to intractable posterior distributions. However, 

recent advance in the field of computational statistics makes the computations of 

posterior distributions feasible. The most common computational Bayesian methods is 

the Markov Chain Monte Carlo (MCMC) (Liu, 1998; Robert and Casella, 2004) 

algorithm. However, MCMC algorithms are typically not appropriate for on-line 

applications because of its fast increasing computational cost over time when data size 

gets larger and larger. On the other hand, the sequential Monte Carlo (SMC) methods, 

including the particle filtering (PF) technique (Doucet et al., 2001; Arulampalam et al., 

2002), can be used. In contrast to the standard MCMC approaches, the sequential 

structure of the SMC methods allows for updating estimations sequentially for each 

newly arriving observation in a computationally efficient way, which is very useful for 

on-line inference.  

Recently, a particle filtering (PF) method has been proposed by Wu et al. (2015) 

for on-line steady state detection. In their method, the target signal is approximated by a 

multiple change-point model and particle filtering techniques are used to estimate the 

posterior distribution of the latest change-point and other model parameters (slope, 

intercept and noise variance). Some improvement strategies including the stratified 

sampling, partial Gibbs resample-move techniques, and timeliness improvement strategy 

are developed to overcome the particle degeneracy and impoverishment problems and 
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reduce the computational cost. The PF method is shown to be much more effective and 

robust in steady state detection compared with moving data window based methods. 

However, the major disadvantage of the PF method is that it requires a large number of 

particles to achieve accurate posterior distribution approximations, due to the high 

dimension of model parameters, which leads to high computational cost and may limit its 

applications in many on-line detection problems that require quick responses.  

In Chapter 2, a novel SMC method is proposed using a Rao-Blackwellization 

technique, combined with a resampling method called the Optimal Resampling, to 

substantially reduce the computational cost and improve the detection robustness on 

noisy data. The main contribution of our algorithm is its significant improvement in 

computational efficiency by taking advantage of the Rao-Blackwellization technique, 

while still achieving comparable or even better detection performance compared with the 

PF method. The significant reduction of computational costs makes our method a much 

more preferred method for many on-line applications where quick steady state detection 

is critical. 

1.2 Short-Run Statistical Process Control  

In the area of statistical process control (SPC), the process parameters such as 

process mean are subject to changes over time and we are concerned with detecting on-

line whether the process mean has deviated from certain in-control region and fallen into 

some out-of-control region. Standard methods such as Shewhart control charts (Shewhart, 

1931) and cumulative sum (CUSUM) control charts (Page, 1961) have been popularly 

used based on a long phase I data gathering. 
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However, in recent decades, as a major consequence of the popularity of the just-

in-time (JIT) manufacturing, industries are gradually abandoning the mass production 

and in favor of the lean production in order to be more competitive in the market 

(Womack et al., 1990). Because of this, there has been an inevitable trend to produce 

smaller lot sizes or production runs. Unlike the classical SPC, in short production runs, 

prior to the beginning of production the control limits for a standard control chart and the 

phase I data needed to estimate the in-control process parameters are often unavailable. 

Therefore, instead of collecting a large number of in-control data in phase I analysis, as 

required by traditional control chart methods, new methods should be developed to 

estimate and timely update the process parameters from the very beginning of a short-run 

process.  

So far, substantial research works have emerged focusing on the short-run SPC. 

Many methods are developed following the traditional SPC setup, where the process is 

assumed to have a stationary in-control state (i.e., the in-control process parameters such 

as process mean are constant). For example, Hawkins (1987) introduced the ‘self-

starting’ CUSUM charts, which do not rely on estimating process parameters from a large 

Phase I data set prior to monitoring the short-run process. Quesenberry (1990, 1991) 

proposed the ‘self-starting’ Q-charts, which are constructed based on sequentially 

updating the estimates of the in-control process mean and variance. However, as pointed 

out by Del Castillo and Montgomery (1992), in some cases the Q-charts do not exhibit 

adequate average run length (ARL) performance. To obtain a better ARL performance, 

Del Castillo and Montgomery (1992) proposed a first-order adaptive Kalman filtering 

method assuming the measurement noise variance is unknown, while the knowledge of 
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the process mean is needed or not too different from real values. In addition, Woodward 

and Naylor (1993) proposed a Bayesian method for the process with piecewise constant 

means subject to some jumps. However, rather than random jumps, the jumps are 

assumed to occur at some known times. 

Opposed to the stationary in-control state, in many short-run processes such as a 

process subject to tool wear or system degradations, signals may exhibit continuous drifts 

in the in-control state. The current existing literature for tackling such in-control state 

with drifting for the short-run process is mainly based on the assumption that the in-

control process mean follows a normal random walk. For example, Crowder and 

Eshleman (2001) proposed a Bayesian adaptive filtering approach where the process 

mean follows purely a random walk. The presented method focused only on parameter 

estimation, while not considering the test of hypothesis whether the process mean has 

shifted to the out-of-control state. Tsiamyrtzis and Hawkins (2005) proposed a Bayesian 

method based on the assumption that the process mean follows a normal random walk 

with some random jumps of fixed size at random times. The random jumps can be used 

to model random step changes of processes due to, say, tool chipping (Tsiamyrtzis and 

Hawkins, 2005). This method is effective in detecting the shift of the process mean into 

the out-of-control state under the assumed model. However, the assumption of known 

and fixed jump sizes may not be realistic in many applications. For example, the amount 

of material loss due to tool chipping is usually random and unknown. The method of 

Tsiamyrtzis and Hawkins (2005) also suffers from intensive computational burden with 

exponentially increasing number of mixtures in the posterior distribution of the process 

mean. Most recently, Apley (2012) introduced a Bayesian approach that utilizes the so-
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called posterior distribution charts for graphically exploring the change of the process 

mean. The proposed model in Apley (2012) can handle any Markov model for the 

process mean. The major limitation is that the numerical approach proposed by Apley 

(2012) for approximating the posterior distributions is difficult to handle cases with more 

than one unknown parameters.   

In Chapter 3, we propose a novel and flexible framework for short run SPC based 

on a Bayesian model. The major contributions of the proposed models and methods in 

Chapter 3 are summarized as follows: (1) Compared with existing methods such as the 

methods proposed by Tsiamyrtzis and Hawkins (2005) and Apley (2012), our proposed 

methods require much less knowledge of the process parameters. Using non-informative 

priors, the proposed model can handle situations where little knowledge is available 

about the jump size or the relation of the process means before and after a jump. (2) The 

proposed methods are much more computationally efficient, which makes our methods 

more applicable in many practical situations where the information of model parameters 

is limited and timely detection of the out-of-control state is crucial. By assuming the 

process mean before and after random jumps are independent in our newly proposed 

model, the exact Bayesian method (Fearnhead and Liu, 2007) for the multiple change-

point model can be used to reduce the computational costs from being exponential as in 

Tsiamyrtzis and Hawkins (2005) to be quadratic over time. We also propose an 

approximate Bayesian inference method based on the particle filter method to further 

reduce the computation costs to be linear over time. (3) When a process is subject to 

multiple phases of degradations, the trend of the process can be modeled with a piecewise 

linear model (Chen and Tsui, 2013). And a nonlinear degradation curve can also be 
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approximated by a piecewise linear trend. Following this idea, in Chapter 3 we further 

propose to extend the step changes in the models of Tsiamyrtzis and Hawkins (2005) and 

Apley (2012) to a piecewise linear model that can be applied to general degradation 

signals. In many degradation models, a failure limit is defined so that a failure occurs if 

the degradation path crosses the failure limit (Lu and Meeker, 1993; Gebraeel et al., 

2005; Chen and Tsui, 2013; Si et al., 2016). If the control limit of our model is set as the 

failure limit of a degradation signal, the proposed procedure can be applied to detect 

failures based on a noisy degradation signal. 

1.3 Statistical Depth and Outlier Detection for Functional Data  

Functional data analysis (FDA) has been a growing interest in recent decades 

(Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) due to the technological advances 

in areas such as engineering, biology, medicine, finance and environmetrics which allow 

us to have random samples of curves. For functional data, each sample consists of values 

that are assumed to be generated from a stochastic function at different time points in a 

given interval of finite length. FDA is superior to the standard multivariate analysis in 

dealing with such functional samples for mainly two reasons. Firstly, since the number of 

dimensions is typically much higher than the number of samples, standard multivariate 

methods are computationally infeasible due to the curse of dimensionality. Secondly, the 

standard multivariate analysis is usually not able to capture some natural properties of the 

functional data, such as shape. 

One of the major tasks in FDA is to obtain an ordering set of functional curves, 

which is an extension of the univariate order statistics. A natural way of ordering such 

curves is to measure the degree of centrality of each curve within the underlying 



www.manaraa.com

10 
 

 
 

population distribution or given samples. This is the idea of statistical depth, whose aim 

is to provide a center-outward ranking within the sample curves. For example, the curve 

with maximum depth is a median function that can be considered as the center of the 

functional distribution, while curves of significantly low depth are expected to be those 

curves being far away from the center of the data (i.e., outliers). Therefore, the depth is 

particularly useful for outlier detection and defining some robust location estimates of the 

sample curves, such as the trimmed mean, or other L-estimates (linear combinations of 

order statistics). 

The statistical depth was originally proposed in the multivariate framework. The 

well-known examples include the Tukey’s halfspace depth (Tukey, 1975), the Oja’s 

depth (Oja, 1983), the simplicial depth (Liu, 1990), the spatial depth (Chaudhuri, 1996), 

the zonoid depth (Koshevoy and Mosler, 1997), the Mahalanobis depth (Zuo and 

Serfling, 2000), and the projection depth (Zuo, 2003). Zuo and Serfling (2000) also 

provides an extensive study of the definitions, properties, as well as some applications of 

multivariate depths. However, direct extension of using statistical depths from 

multivariate data to functional data encounters some difficulties. As discussed in Cuevas 

et. al (2007), some of the proposed multivariate depths have reasonable computational 

performance in lower dimensions (two or three) but will be computationally intractable in 

higher dimensional cases. Additionally, the multivariate depths typically do not take into 

consideration some natural properties of the functional curves, such as shape (López-

Pintado and Romo, 2009). 

Therefore, different depth notions for analyzing functional data with more 

effectiveness and robustness are developed, which are called the functional data depths. 
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Most of the existing functional data depths are global-oriented, in which the degree of the 

centrality of a curve depends equally on the remaining curves in the data. After the 

pioneering work proposed by Fraiman and Muniz (2001), several alternatives have been 

also proposed, including the projection-based functional depth in Curvas et al. (2007), the 

band depth in López-Pintado and Romo (2009), the half-region depth in López-Pintado 

and Romo (2011), and the functional spatial depth in Chakraborty and Chaudhuri (2014). 

In contrast, some research works also focus on developing the local-oriented functional 

depth, such as the h-modal depth (HMD) in Curvas et al. (2006), and the kernel-based 

functional spatial depth (KFSD) proposed by Sguera el al. (2014). These local-oriented 

depth approaches are particularly useful in detecting location outliers (outliers that are 

very distant from the mean of normal curves), as a result of considering reduced 

contributions of curves to the depth of the target curve (the curve whose depth is to be 

calculated) when their distances to the target curve increase.  

 

Figure 1-1. Illustration of the drawback of BD in detecting shape outliers. 

Among the existing work in functional depth, the band depth (BD) in López-

Pintado and Romo (2009) is shown to be effective in detecting shape outliers – outliers 
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exhibiting different shape patterns from normal curves or very irregular in a set of smooth 

curves. However, the ability of BD in detecting shape outliers is still very limited. BD is 

defined based on all possible bands delimited by the graphs on the plane of at least two 

curves, and whether the target curve is inside these bands. The more bands that the target 

curve falls inside, the larger depth of the target curve would have. As a consequence, BD 

is only sensitive to those shape outliers which are not fully inside the bands, while being 

incapable of differentiating those shape outliers that are completely inside the bands. As 

illustrated in Figure 1-1, for the first case, BD is able to detect the outlier since it is not 

completely inside the band (delimited by two black curves); however, for the second 

case, BD cannot distinguish the outlier from the normal curve since they are both inside 

the band.  

To overcome such drawback and improve the robustness in detecting various 

types of outliers, in Chapter 4 we propose a new functional data depth called the 

weighted band depth (WBD) and its localized version for functional data. The main 

contributions of our work are two-folds. Firstly, by introducing the idea called shape 

distance, which is defined based on measuring differences between curves with respect to 

their shapes, WBD has substantially improved strength of detecting shape outliers. 

Secondly, by considering the relative location information between curves, the localized 

version of WBD (LWBD) can be also very sensitive to detect location outliers. LWBD is 

shown to be robust in detecting both location outliers and shape outliers, making it a 

preferred depth approach when different types of outliers are present. 

In summary, the remainder of this thesis is organized as follows. In Chapter 2, we 

study the on-line steady state detection problem. A novel on-line steady state detection 
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algorithm under the Bayesian framework based on a multiple change-point state space 

model formulation and the sequential Monte Carlo methods is presented. In Chapter 3, an 

efficient Bayesian method is introduced for on-line inference of the process mean in the 

short-run process of the statistical process control. In Chapter 4, we propose the weighted 

band depth and its localized version for functional data in detecting various types of 

outliers with more effectiveness and robustness. 
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CHAPTER 2. ON-LINE STEADY STATE DETECTION BASED ON RAO-

BLACKWELLIZED SEQUENTIAL MONTE CARLO 

In this chapter, we introduce a novel on-line steady state detection algorithm 

under the Bayesian framework based on a multiple change-point state space formulation 

and the sequential Monte Carlo methods. A Rao-Blackwellization technique is proposed 

to substantially reduce the variance of Monte Carlo estimation and greatly enhance the 

computational efficiency. In addition, a resampling scheme called the Optimal 

Resampling is used for eliminating duplicate samples and the robustness of steady state 

detection is significantly improved by using the information of the particles more 

efficiently. Numerical studies based on simulated signals and application to a real data set 

are used to evaluate the performance of the proposed method and compare with other 

existing methods from the literature. The proposed method is shown to establish a more 

robust performance than other methods. And it is much more computationally efficient 

than the standard sequential Monte Carlo method. 

The remainder of this chapter is organized as follows. A multiple change-point 

model formulation of this problem is introduced in Section 2.1. In Section 2.2, we give a 

detailed description of the proposed SMC algorithm. The numerical examples and 

application to real signals are presented in Section 2.3. And a summary is given in 

Section 2.4. 
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2.1 Piecewise Linear Model with Multiple Change-Points 

Given a noisy signal 𝐲0:𝑁 = (𝑦0, 𝑦1, … , 𝑦𝑁) , this chapter targets detecting the 

steady state of the signal using multiple change-point models. The basic idea is that we 

approximate any signal, linear or nonlinear, using a piecewise linear model that allows 

for local linear representations of the signal, as shown in Figure 2-1. The parameters 

(slope, intercept and noise variance) are assumed to be independent across different 

segments. When the latest line segment is sufficiently ‘flat’, the signal is considered to be 

in the steady state. 

 

Figure 2-1. Illustration of approximating nonlinear signals using piecewise linear model: 

(a) signal generated using exponential function and noise; (b) oscillating nonlinear 

function. 

Suppose at time 𝑡 the model parameters are 𝛏𝑡 = (𝛽0𝑡, 𝛽1𝑡, 𝜎𝑡
2), where 𝛽0𝑡 is the 

intercept of the current line segment, 𝛽1𝑡  is the slope, and 𝜎𝑡
2  is the unknown noise 

variance. The model parameters 𝛏𝑡 are subject to change at unknown change-points 𝐂𝑚 =
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(𝑐1, 𝑐2, … , 𝑐𝑚) while remaining constant otherwise. This multiple change-point model can 

be written as: 

𝛏𝑡 =

{
 
 

 
 

𝛉1   if 0 ≤ 𝑡 < 𝑐1
𝛉2   if 𝑐1 ≤ 𝑡 < 𝑐2
⋮              ⋮          
𝛉𝑚   if 𝑐𝑚−1 ≤ 𝑡 < 𝑐𝑚

𝛉𝑚+1   if 𝑐𝑚 ≤ 𝑡 ≤ 𝑁

 

 

(2-1) 

where 𝛉𝑖 ∈ ℛ
3, 𝑖 = 1, 2, … ,𝑚 + 1 are the values of model parameters at 𝑚 + 1 different 

line segments.  

Within the Bayesian framework, we assign appropriate priors to the change-points 

between two segments, as well as other model parameters. Their posterior distributions 

can then be sequentially updated and the steady state can be inferred based on the 

posterior distributions of model parameters (e.g., slope) of the current line segment. In 

model (2-1), the 𝛉𝑖’s and 𝑐𝑖’s are unknown. We assign a prior distribution 𝑞𝛉(∙) for 𝛉𝑖’s. 

Let 𝜏𝑡 be the latest change-point up to time 𝑡. It is easy to see that 𝜏𝑡 = 𝑐𝑖−1 iff 𝑐𝑖−1 ≤

𝑡 < 𝑐𝑖 . Therefore 𝜏𝑡 ’s and 𝑐𝑖 ’s contain equivalent information. We assign a prior 

transition probability for 𝜏𝑡  given 𝜏𝑡−1 as 𝑃(𝜏𝑡|𝜏𝑡−1). If a change occurs at time 𝑡, we 

have 𝜏𝑡 = 𝑡, otherwise 𝜏𝑡 = 𝜏𝑡−1. In this chapter we assume 𝑃(𝜏𝑡 = 𝑡|𝜏𝑡−1) = 𝑝, which 

corresponds to a geometric distribution with probability 𝑝 for the random duration of 

each line segment.  

To facilitate application of the sequential Monte Carlo (SMC) method for online 

inference of model parameters, we first reformulate the piecewise linear model in Eq. (2-

1) into a state space model, where at each time 𝑡 the distribution of the observation 𝑦𝑡 

depends on a hidden state vector denoted by 𝐱𝑡. Defining the state vector as 𝐱𝑡 = (𝛏𝑡, 𝜏𝑡), 

the state space model is given as: 
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𝐱𝑡 = (𝛏𝑡 , 𝜏𝑡)|𝐱𝑡−1 = {
(𝛉∗, 𝑡)                           with probability 𝑝 (change occurs at 𝑡)

𝐱𝑡−1 = (𝛏𝑡−1, 𝜏𝑡−1)   with probability 1 − 𝑝 (no change at 𝑡)
 

𝑦𝑡 = 𝛽0𝑡 + 𝛽1𝑡𝑡 + 휀𝑡, 휀𝑡~𝑁(0, 𝜎𝑡
2) 

(2-2) 

where 𝛉∗~𝑞𝛉(∙) and is independent of 𝛏𝑡−1 , and 휀𝑡  is the Gaussian noise. The 

state transition of the state space model is illustrated in Figure 2-2. It can be seen that the 

state space model in Eq. (2-2) equivalently represents the piecewise linear model in Eq. 

(2-1). Based on Eq. (2-2), at any time 𝑡, with probability 𝑝 a change occurs (𝜏𝑡 = 𝑡) and a 

new line segment is started. Since 𝛏𝑡 , 𝑡 ≥ 0 contain all the information on 𝛉𝑖’s in Eq. (2-

1) and 𝜏𝑡, 𝑡 ≥ 0 contain all the information on 𝑐𝑖 ’s in Eq. (2-1), the inference of the 

parameters in the piecewise linear model in Eq. (2-1) is equivalent to the inference of the 

state vector 𝐱𝑡 = (𝛏𝑡, 𝜏𝑡) in Eq. (2-2). Consequently, we can focus on the state space 

model in Eq. (2-2) and the inference of (𝛏𝑡 , 𝜏𝑡) to develop the steady state detection 

method. 

 

Figure 2-2. Illustration of the state space model. 

If 𝜏𝑡 = 0 for all 𝑡, that is, if there is no change-point, the above model reduces to a 

linear Gaussian system, in which the Kalman filter (KF) (Kalman, 1960) provides a 

closed-form solution for efficient state estimations. However, because of the existence of 
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unknown change-points, the state space model is a nonlinear model which cannot be 

solved directly by KF. On the other hand, the PF techniques are common and effective 

for nonlinear state space models. Recently, a PF method has been proposed by Wu et al. 

(2015) for on-line steady state detection. A disadvantage of the method in Wu et al. 

(2015) is that it requires a large number of particles because each parameter in the state 

vector 𝐱𝑡  needs to be sampled. In the following section, we propose a more efficient 

sequential Monte Carlo algorithm based on a variance reduction method called Rao-

Blackwellization. 

2.2 Rao-Blackwellized Sequential Monte Carlo for On-line Steady 

State Detection 

2.2.1 Review of Standard SMC for State Space Model 

In this section, the general framework of standard SMC algorithm for state space 

model is reviewed. The main idea for SMC method is to use a recursive importance 

sampling strategy to get a set of properly weighted samples, which are used to 

approximate the desired posterior density of the state vector in a state space model. For 

the state space model in Eq. (2-2), let 𝐱0:𝑡 = {𝐱0, 𝐱1, … , 𝐱𝑡} be the set of all state vectors 

up to the current time 𝑡, and 𝐲0:𝑡 = (𝑦0, 𝑦1, … , 𝑦𝑡) be the observations up to the current 

time 𝑡. On-line inference of 𝐱0:𝑡 is of our central interest; that is, at time 𝑡, we want to 

estimate the posterior density 𝑝(𝐱0:𝑡|𝐲0:𝑡) . Usually 𝑝(𝐱0:𝑡|𝐲0:𝑡)  is of an intractable 

density form where direct simulations cannot be implemented.  

In such case, we often resort to the Importance Sampling (IS) approach in which 

we bypass the intractable distribution by considering some importance distribution where 

direct simulations can be easily performed. Suppose samples (particles) {𝐱0:𝑡
(𝑖)
}𝑖=1
𝑛  are 
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generated from an importance distribution 𝜋(𝐱0:𝑡|𝐲0:𝑡). By associating the importance 

weight: 

 
𝑤𝑡
(𝑖)
=
𝑝(𝐱0:𝑡

(𝑖)
|𝐲0:𝑡)

 𝜋(𝐱0:𝑡
(𝑖)
|𝐲0:𝑡)

 
(2-3) 

to the sample 𝐱0:𝑡
(𝑖)

, the posterior density of interest can be approximated as:       

 
�̂�(𝐱0:𝑡|𝐲0:𝑡) =∑𝑤𝑡

(𝑖)𝛿(𝐱0:𝑡 − 𝐱0:𝑡
(𝑖)
)

𝑛

𝑖=1

 
(2-4) 

where 𝛿 denotes the Dirac function and the weights are normalized such that ∑ 𝑤𝑡
(𝑖)
=𝑛

𝑖=1

1 . Therefore �̂�(𝐱0:𝑡|𝐲0:𝑡)  is a discrete weighted approximation of the true 

posterior  𝑝(𝐱0:𝑡|𝐲0:𝑡).  The pairs {𝐱0:𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛  are a collection of properly weighted 

sample with respect to the posterior distribution 𝑝(𝐱0:𝑡|𝐲0:𝑡). An important observation is 

that 𝐱𝑡
(𝑖)

 is also properly weighted by 𝑤𝑡
(𝑖)

 with respect to the marginal posterior 

distribution 𝑝(𝐱𝑡|𝐲0:𝑡).  

To implement Monte Carlo techniques for the on-line estimation problem, 

�̂�(𝐱0:𝑡|𝐲0:𝑡)  with respect to 𝑝(𝐱0:𝑡|𝐲0:𝑡) needs to be sequentially computed. Since the 

state equation in our system follows the Markovian structure, we can implement the 

importance sampling recursively, which forms the basis of SMC methods (Liu and Chen, 

1998; Doucet et al., 2000). Based on the Bayes’ theorem, weights can be sequentially 

updated as follows: 
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𝑤𝑡
(𝑖) =

𝑝(𝐱0:𝑡
(𝑖)
|𝐲0:𝑡)

 𝜋(𝐱0:𝑡
(𝑖) |𝐲0:𝑡)

∝
𝑝(𝐱0:𝑡

(𝑖)
|𝐲0:𝑡−1)𝑝(𝑦𝑡|𝐱0:𝑡

(𝑖)
, 𝐲0:𝑡−1)

 𝜋(𝐱0:𝑡−1
(𝑖) |𝐲0:𝑡−1)𝜋(𝐱𝑡

(𝑖)|𝐱0:𝑡−1
(𝑖) , 𝐲0:𝑡)

 

= 𝑤𝑡−1
(𝑖)
𝑝(𝐱𝑡

(𝑖)|𝐱0:𝑡−1
(𝑖) , 𝐲0:𝑡−1)𝑝(𝑦𝑡|𝐱0:𝑡

(𝑖) , 𝐲0:𝑡−1)

 𝜋(𝐱𝑡
(𝑖)|𝐱0:𝑡−1

(𝑖) , 𝐲0:𝑡)
 

 

(2-5) 

Applying Eq. (2-5) to the state space model in Eq. (2-2), we have:  

 

𝑤𝑡
(𝑖) ∝ 𝑤𝑡−1

(𝑖)
𝑓𝑡−1(𝐱𝑡

(𝑖)|𝐱𝑡−1
(𝑖) )𝑔𝑡−1(𝑦𝑡|𝐱𝑡

(𝑖))

𝜋(𝐱𝑡
(𝑖)
|𝐱0:𝑡−1
(𝑖)

, 𝐲0:𝑡)
 

 

(2-6) 

where 𝑓𝑡−1(𝐱𝑡|𝐱𝑡−1)  is the probability density function (pdf) of (𝐱𝑡|𝐱𝑡−1)  and 

𝑔𝑡−1(𝑦𝑡|𝐱𝑡) is the pdf of 𝑦𝑡 given 𝐱𝑡. 

If we want to estimate the expectation of a function of 𝐱0:𝑡 , say 𝑚(𝐱0:𝑡) , 

conditioning on 𝐲0:𝑡, we have:  

 

𝐸(𝑚(𝐱0:𝑡)|𝐲0:𝑡) = ∫𝑚(𝐱0:𝑡)𝑝(𝐱0:𝑡|𝐲0:𝑡) 𝑑𝐱0:𝑡 ≃∑𝑤𝑡
(𝑖)
𝑚(𝐱0:𝑡

(𝑖)
)

𝑛

𝑖=1

 (2-7) 

There are two important issues regarding the design and implementation of the 

SMC algorithm. One is the selection of the importance density 𝜋(𝐱𝑡
(𝑖)|𝐱0:𝑡−1

(𝑖) , 𝐲0:𝑡) in Eq. 

(2-6). It is often convenient to choose it to be the prior 𝜋(𝐱𝑡
(𝑖)|𝐱0:𝑡−1

(𝑖) , 𝐲0:𝑡) =

𝑓𝑡−1(𝐱𝑡
(𝑖)|𝐱𝑡−1

(𝑖) ), which greatly simplifies the weights update in Eq. (2-6) as: 

𝑤𝑡
(𝑖) ∝ 𝑤𝑡−1

(𝑖) 𝑔𝑡−1(𝑦𝑡|𝐱𝑡
(𝑖)) (2-8) 

The other important issue is the use of resampling. The standard SMC algorithm 

suffers from the degeneracy phenomenon, where after a few iterations, all but one of the 

weights are very close to zero (Doucet et al., 2000). This degeneracy indicates the 
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majority of computational work for updating samples and weights are wasted. The 

resampling scheme is used to reduce such effect by eliminating particles with low 

weights and concentrating on those with large weights, so that all of the resampled 

particles can contribute significantly to the importance sampling estimates. A simple and 

common choice of resampling procedure is the multinomial resampling, which involves 

generating a new set of particles {𝐱𝑡
(𝑗)
} 𝑗=1
𝑛  by resampling with replacement 𝑛 times from 

{𝐱𝑡
(𝑖)
} 𝑖=1
𝑛  according to their weights {𝑤𝑡

(𝑖)
} 𝑖=1
𝑛 , and then assigning equal weights 1/𝑛  to 

the new set of particles {𝐱𝑡
(𝑗)
} 𝑗=1
𝑛 .   

The above procedure of standard SMC algorithm with resampling is usually 

called the particle filtering algorithm and shown in Algorithm 2-1. In the following 

sections, we propose two improvements of the standard SMC algorithm. In section 2.2.2, 

a variance reduction method called Rao-Blackwellization is used to substantially lower 

the computational cost of the standard SMC algorithm. In section 2.2.3, we introduce a 

new resampling scheme to achieve better detection estimation of the steady state.  

Algorithm 2-1. Standard SMC Algorithm 

Initialization, for 𝑖 = 1,… , 𝑛: 

 Sample particles  𝐱0
(𝑖)
= (𝛏0

(𝑖)
, 𝜏0
(𝑖)
), where 𝛏0

(𝑖)
~𝑞𝛏(∙) and 𝜏0

(𝑖)
= 0. 

 Assign  𝑤0
(𝑖)
= 1/𝑛 to each particle 𝐱0

(𝑖)
. 

For 𝑡 = 1, … , 𝑇: 

 For 𝑖 = 1, … , 𝑛: 

o Draw samples 𝐱𝑡
(𝑖)

 from the importance distribution 𝑓𝑡−1(𝐱𝑡|𝐱𝑡−1
(𝑖) ). 

 Updating weights: 
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o Compute weights 𝑤𝑡
(𝑖)

 according to Eq. (2-8) and normalize the weights such 

that ∑ 𝑤𝑡
(𝑖)
= 1𝑛

𝑖=1 . 

 Resampling: resample {𝐱𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛  to generate 𝑛  equally weighted particles 

             {�̃�𝑡
(𝑗)
,
1

𝑛
} 𝑗=1
𝑛 , and set {𝐱𝑡

(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛 = {�̃�𝑡

(𝑗)
,
1

𝑛
} 𝑗=1
𝑛 . 

2.2.2 Rao-Blackwellized SMC Algorithm 

In this subsection, a Rao-Blackwellized version of the SMC algorithm is 

proposed. Its main idea is to marginalize out the parameters associated with each line 

segment and achieves substantial variance reduction of Monte Carlo estimates. The 

parameters of each line segment can be integrated out and estimated by taking advantage 

of the results from Bayesian linear regression. With Rao-Blackwellization (Casella and 

Robert, 1996; Doucet et al., 2001), the algorithm is much more efficient than the standard 

SMC algorithm. 

To make proper inference of the state vector 𝐱𝑡 which consists of four parameters, 

the common way for standard SMC algorithm is to obtain estimates based on their joint 

posterior distribution, namely 𝑝(𝛃𝑡, 𝜎𝑡
2, 𝜏𝑡|𝐲0:𝑡), where 𝛃𝑡 = (𝛽0𝑡, 𝛽1𝑡) (Wu et al., 2015). 

Although such method is effective and robust to detect the steady state, it is at the 

expense of high computational cost since a large number of particles have to be generated 

at each time step 𝑡 to approximate the joint distribution of four variables. However, under 

appropriate choice of priors, 𝛃𝑡 and 𝜎𝑡
2 of each line segment can actually be integrated 

out, resulting in a particularly efficient algorithm with reduced variance of the estimates. 

More specifically, the unknown posterior density of interest can be factorized as follows: 
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𝑝(𝛃𝑡, 𝜎𝑡

2, 𝜏𝑡|𝐲0:𝑡) = 𝑝(𝛃𝑡, 𝜎𝑡
2|𝜏𝑡, 𝐲0:𝑡)𝑃(𝜏𝑡|𝐲0:𝑡) (2-9) 

in which the conditional posterior density 𝑝(𝛃𝑡, 𝜎𝑡
2|𝜏𝑡, 𝐲0:𝑡)  can be solved 

analytically if we use the conjugate priors for 𝛃𝑡 and 𝜎𝑡
2. Consequently, estimating the 

joint distribution 𝑝(𝛃𝑡, 𝜎𝑡
2, 𝜏𝑡|𝐲0:𝑡)  requires Monte Carlo samples from only a one 

dimensional distribution  𝑃(𝜏𝑡|𝐲0:𝑡) , which can dramatically reduce the number of 

particles needed to reach a given estimation accuracy. In the remainder of this section, we 

will first discuss how to obtain the analytical solution for the conditional joint posterior 

density 𝑝(𝛃𝑡, 𝜎𝑡
2|𝜏𝑡, 𝐲0:𝑡) . Then we will discuss how to sample 𝜏𝑡  based on another 

application of Rao-Blackwellization. 

To derive the conditional joint posterior density 𝑝(𝛃𝑡, 𝜎𝑡
2|𝜏𝑡, 𝐲0:𝑡) , we first 

factorize it as: 

 𝑝(𝛃𝑡 , 𝜎𝑡
2|𝜏𝑡 , 𝐲0:𝑡) = 𝑝(𝛃𝑡|𝜎𝑡

2, 𝜏𝑡 , 𝐲0:𝑡)𝑝(𝜎𝑡
2|𝜏𝑡 , 𝐲0:𝑡)    

                                 = 𝑝(𝛃𝑡|𝜎𝑡
2, 𝜏𝑡 , 𝐲𝜏𝑡:𝑡)𝑝(𝜎𝑡

2|𝜏𝑡 , 𝐲𝜏𝑡:𝑡) 

 

(2-10) 

The last equation in Eq. (2-10) is due to the assumption that the model parameters 

between different line segments are independent. Using the conjugate prior, we assume 

that 𝛃𝑡|𝜎𝑡
2 follows a normal distribution with its mean vector 𝛍0 and covariance matrix 

𝜎𝑡
2𝚺0, where 𝚺0 is a 2 2  symmetric positive definite matrix. The prior distribution of  

𝜎𝑡
2 is chosen to be the inverse gamma density with shape parameter 𝑎0(𝑎0 > 1) and scale 

parameter 𝑏0(𝑏0 > 0). Due to the conjugacy of normal and inverse gamma distributions 

and based on the results from Bayesian linear regression (O’Hagan, 1994), we have:   

(𝛃𝑡|𝜎𝑡
2, 𝜏𝑡, 𝐲𝜏𝑡:𝑡)~𝑁(𝛍𝜏𝑡,𝑡, 𝜎𝑡

2𝚺𝜏𝑡,𝑡) 

(𝜎𝑡
2|𝜏𝑡, 𝐲𝜏𝑡:𝑡)~𝐼𝐺(𝑎𝜏𝑡,𝑡, 𝑏𝜏𝑡,𝑡) 
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and the parameters 𝛍𝜏𝑡,𝑡, 𝚺𝜏𝑡,𝑡, 𝑎𝜏𝑡,𝑡, 𝑏𝜏𝑡,𝑡 are updated according to the following equations: 

  𝚺𝜏𝑡,𝑡 = (𝚺0
−1 + 𝐃𝜏𝑡,𝑡

𝑇 𝐃𝜏𝑡,𝑡)
−1

 

𝛍𝜏𝑡,𝑡 = 𝚺𝜏𝑡,𝑡(𝚺0
−1𝛍0 + 𝐃𝜏𝑡,𝑡

𝑇 𝐲𝜏𝑡:𝑡) 

𝑎𝜏𝑡,𝑡 = 𝑎0 +
𝑡 − 𝜏𝑡 + 1

2
 

𝑏𝜏𝑡,𝑡 = 𝑏0 +
1

2
(𝐲𝜏𝑡:𝑡

𝑇 𝐲𝜏𝑡:𝑡 + 𝛍0
𝑇𝚺0

−1𝛍0 − 𝛍𝜏𝑡,𝑡
𝑇 𝚺𝜏𝑡,𝑡

−1 𝛍𝜏𝑡,𝑡) 

 

 

 

 

(2-11) 

where 𝐃𝜏𝑡,𝑡 = [

1
1

𝜏𝑡
𝜏𝑡 + 1

⋮
1

⋮
𝑡

]. 

When approaching the steady state, the signal can be characterized by a sustained 

‘flat’ line segment. For this reason, the posterior knowledge of  𝛃𝑡, especially that of the 

slope parameter 𝛽1𝑡, is very important for steady state detection. The marginal posterior 

distribution of 𝛃𝑡  after integrating out 𝜎𝑡
2  can be computed based on Lemma 2-1 as 

follows (the proof is included in APPENDIX A). 

Lemma 2-1. (𝛃𝑡|𝜏𝑡, 𝐲𝜏𝑡:𝑡) follows a bivariate non-standardized student’s 𝑡  distribution 

with degrees of freedom 2𝑎𝜏𝑡,𝑡, location parameter 𝛍𝜏𝑡,𝑡, and scale matrix 
𝑏𝜏𝑡,𝑡

𝑎𝜏𝑡,𝑡
𝚺𝜏𝑡,𝑡, which 

is denoted as (𝛃𝑡|𝜏𝑡, 𝐲𝜏𝑡:𝑡) ~𝑡2 (𝛍𝜏𝑡,𝑡,
𝑏𝜏𝑡,𝑡

𝑎𝜏𝑡,𝑡
𝚺𝜏𝑡,𝑡, 2𝑎𝜏𝑡,𝑡). 

To approximate the desired posterior density 𝑝(𝛃𝑡, 𝜎𝑡
2, 𝜏𝑡|𝐲0:𝑡) using Eq. (2-9), we 

also need to generate Monte Carlo samples of  𝜏𝑡, the latest change-point at the current 

time 𝑡, to approximate 𝑃(𝜏𝑡|𝐲0:𝑡). Intuitively, we can generate each sample 𝜏𝑡
(𝑖)

 from its 

prior transition probability 𝑃(𝜏𝑡
(𝑖)
|𝜏𝑡−1
(𝑖)
)  based on the idea of the standard SMC 
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algorithm.  However, a more efficient way to sample 𝜏𝑡
(𝑖)

 can be done as follows, which 

is based on the application of Rao-Blackwellization to 𝜏𝑡 (Chopin, 2007): 

• For each particle 𝜏𝑡−1
(𝑖)

 and its associated weight 𝑤𝑡−1
(𝑖)

, 𝑖 = 1,… , 𝑛 , create its two 

possible descendants at time 𝑡, with weights: 

𝜏𝑡
(𝑖,1)

= 𝜏𝑡−1
(𝑖)

, 𝑤𝑡
(𝑖,1)

= 𝑤𝑡−1
(𝑖)
𝑃 (𝜏𝑡

(𝑖)
= 𝜏𝑡−1

(𝑖)
|𝜏𝑡−1
(𝑖)
) 𝑝 (𝑦𝑡|𝜏𝑡

(𝑖)
= 𝜏𝑡−1

(𝑖)
, 𝐲
𝜏𝑡
(𝑖)
:𝑡−1

); 

𝜏𝑡
(𝑖,2)

= 𝑡, 𝑤𝑡
(𝑖,2)

= 𝑤𝑡−1
(𝑖)
𝑃 (𝜏𝑡

(𝑖)
= 𝑡|𝜏𝑡−1

(𝑖)
) 𝑝 (𝑦𝑡|𝜏𝑡

(𝑖)
= 𝑡, 𝐲

𝜏𝑡
(𝑖)
:𝑡−1

) 

(2-12) 

The predictive density 𝑝 (𝑦𝑡|𝜏𝑡
(𝑖), 𝐲

𝜏𝑡
(𝑖)
:𝑡−1

) in Eq. (2-12) can be calculated based 

on the following Lemma 2-2 (see APPENDIX B for the proof).  

Lemma 2-2. Denote 𝐗𝑡 = [1 𝑡], then:  

(a). (𝑦
𝑡
|𝜏𝑡, 𝐲𝜏𝑡:𝑡−1)~𝑡1 (𝐗𝑡𝛍𝜏𝑡,𝑡−1,

𝑏𝜏𝑡,𝑡−1

𝑎𝜏𝑡,𝑡−1
(1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡

𝑇), 2𝑎𝜏𝑡,𝑡−1) , if 𝜏𝑡 = 𝜏𝑡−1; 

(b). (𝑦
𝑡
|𝜏𝑡, 𝐲𝜏𝑡:𝑡−1)~𝑡1 (𝐗𝑡𝛍0,

𝑏0

𝑎0
(1 + 𝐗𝑡𝚺0𝐗𝑡

𝑇), 2𝑎0) , if 𝜏𝑡 = 𝑡.  

The resulted set of 2𝑛 particles after Rao-Blackwellzation of 𝜏𝑡
(𝑖)
, 𝑖 = 1, … , 𝑛 can 

be resampled according to the weights 𝑤𝑡
(𝑖,1)

, 𝑤𝑡
(𝑖,2)

, 𝑖 = 1,2, … , 𝑛 to obtain 𝑛 resampled 

particles to avoid an exponentially increasing number of particles. By doing exact 

calculations on weights of all possible values of 𝜏𝑡
(𝑖)

, i.e., 𝜏𝑡
(𝑖)
= 𝜏𝑡−1

(𝑖)
 and 𝜏𝑡

(𝑖)
= 𝑡, the 

randomness inherent in the simulation of 𝜏𝑡
(𝑖)

 based on 𝑃(𝜏𝑡
(𝑖)
|𝜏𝑡−1
(𝑖)
) is removed, which 

leads to further variance reduction. 

At time 𝑡, similar to the standard SMC algorithm, the resulted 2𝑛 particles can be 

used to approximate the true posterior distribution 𝑃(𝜏𝑡|𝐲0:𝑡) . Suppose 
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{𝜏𝑡
(𝑖,𝑗)

, 𝑤𝑡
(𝑖,𝑗)

} 𝑖=1
𝑛 , 𝑗 = 1,2 are the 2𝑛 properly weighted samples with respect to 𝑃(𝜏𝑡|𝐲0:𝑡) 

after the Rao-Blackwellization of 𝜏𝑡
(𝑖)

, then the posterior density 𝑝(𝛃𝑡|𝐲0:𝑡)  can be 

approximated as: 

 �̂�(𝛃𝑡|𝐲0:𝑡) =∑∑𝑤𝑡
(𝑖,𝑗)

2

𝑗=1

𝑛

𝑖=1

𝑝 (𝛃𝑡|𝜏𝑡
(𝑖,𝑗)

, 𝐲
𝜏𝑡
(𝑖,𝑗)

:𝑡
) 

 

(2-13) 

where  𝑝 (𝛃𝑡|𝜏𝑡
(𝑖,𝑗)

, 𝐲
𝜏𝑡
(𝑖,𝑗)

:𝑡
) can be obtained from Lemma 2-1.   

It is well-known that the student’s 𝑡  distribution in Lemma 2-2 can be well-

approximated by normal distribution with the same mean and variance when its degrees 

of freedom 2𝑎𝜏𝑡,𝑡−1 (or 2𝑎0) ≥ 30 (Li and Moor, 1999) to reduce the computational cost. 

In Section 2.3, we will use both the exact calculations for the pdf of student’s 𝑡 

distribution and their normal approximations to study the detection performance. 

In summary, the proposed Rao-Blackwellized version of our SMC algorithm is 

given in Algorithm 2-2 as follows. 

Algorithm 2-2. Rao-Blackwellized SMC Algorithm  

Initialization: 

 Sample particles {𝜏0
(𝑖)
, 𝑤0

(𝑖)
} 𝑖=1
𝑛  with 𝜏0

(𝑖)
= 0 and 𝑤0

(𝑖)
=

1

𝑛
.  

For 𝑡 = 1, … , 𝑇: 

 For 𝑖 = 1, … , 𝑛: 

o Create two possible descendants 𝜏𝑡
(𝑖,1)

= 𝜏𝑡−1
(𝑖)

, 𝜏𝑡
(𝑖,2)

= 𝑡 of 𝜏𝑡−1
(𝑖)

, calculate their 

associated weights 𝑤𝑡
(𝑖,1)

, 𝑤𝑡
(𝑖,2)

 based on Eq. (2-12) and normalize the weights 

such that ∑ ∑ 𝑤𝑡
(𝑖,𝑗)2

𝑗=1
𝑛
𝑖=1 = 1. 
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 Parameter estimation: estimate 𝑝(𝛃𝑡|𝐲0:𝑡) based on Eq. (2-13). 

 Resampling: resample {𝜏𝑡
(𝑖,𝑗)

, 𝑤𝑡
(𝑖,𝑗)

} 𝑖=1
𝑛 , 𝑗 = 1,2  to generate 𝑛 equally weighted 

particles  {�̃�𝑡
(𝑘)
,
1

𝑛
} 𝑘=1
𝑛 , and set {𝜏𝑡

(𝑖)
, 𝑤𝑡

(𝑖)
 } 𝑖=1
𝑛 = {�̃�𝑡

(𝑘)
,
1

𝑛
} 𝑘=1
𝑛 . 

2.2.3 Optimal Resampling 

A simple resampling method for the Rao-Blackwellized SMC algorithm discussed 

in previous section is the multinomial resampling method. However, the resampled 

particles using multinomial resampling suffer from a significant loss of diversity (with 

many duplicate particles) because the particles with significant importance weights 𝑤𝑡
(𝑖)

 

are repeatedly selected many times. Due to the discrete nature of the change points 𝜏𝑡 in 

our model, having duplicate particles is wasteful as they contain exactly the same 

information as a single particle with its weight equal to the sum of the weights of the 

duplicate particles.  

Therefore, at each time 𝑡 we will combine duplicate particles into a single particle 

so that we only have distinctive particles before the resampling step. Then we will apply 

the Optimal Resampling (OR) method (Fearnhead and Clifford, 2003) for the set of 

distinctive particles. Suppose at time 𝑡 − 1  we have 𝑛𝑑  distinctive particles after 

resampling. Then after Rao-Blackwellization of 𝜏𝑡
(𝑖)

 at time 𝑡, there will be 2𝑛𝑑 particles 

{𝜏𝑡
(𝑖,𝑗)

, 𝑤𝑡
(𝑖,𝑗)

} 𝑖=1
𝑛𝑑 , 𝑗 = 1,2 , where 𝜏𝑡

(𝑖,1)
= 𝜏𝑡−1

(𝑖)
, 𝜏𝑡

(𝑖,2)
= 𝑡  and ∑ ∑ 𝑤𝑡

(𝑖,𝑗)2
𝑗=1

𝑛𝑑
𝑖=1 = 1 . By 

combining the duplicate particles {𝜏𝑡
(𝑖,2)

= 𝑡,𝑤𝑡
(𝑖,2)

} 𝑖=1
𝑛𝑑  , we will have 𝑛𝑑 + 1 distinctive 

particles {𝜏𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛𝑑+1  , where 𝜏𝑡

(𝑖)
= 𝜏𝑡

(𝑖,1)
, 𝑤𝑡

(𝑖)
= 𝑤𝑡

(𝑖,1)
, 𝑖 = 1,2, … , 𝑛𝑑; 𝜏𝑡

(𝑛𝑑+1) =

𝑡,𝑤𝑡
(𝑛𝑑+1) = ∑ 𝑤𝑡

(𝑖,2)𝑛𝑑
𝑖=1 . The following Algorithm 2-3, which is a special case of the OR 

method, can be used to resample 𝑛𝑑  distinctive particles from the 𝑛𝑑 + 1  distinctive 
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particles {𝜏𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛𝑑+1. 

The stratified sampling scheme used in the last step ensures each distinctive 

particle is resampled at most once so that the resulting 𝑛𝑑 particles are distinctive. It is 

shown in Fearnhead and Clifford (2003) that the resampled 𝑛𝑑 samples {�̃�𝑡
(𝑖)
, �̃�𝑡

(𝑖)
} 𝑖=1
𝑛𝑑  are 

still properly weighted with respect to the desirable posterior distribution 𝑃(𝜏𝑡|𝐲0:𝑡). The 

OR method has the computational complexity of 𝑂(𝑛𝑑). And it is optimal (Fearnhead 

and Clifford, 2003) since it minimizes the expected squared error 𝐸[∑ (𝑊𝑡
(𝑖)
−

𝑛𝑑+1
𝑖=1

𝑤𝑡
(𝑖)
)2], where 𝑊𝑡

(𝑖)
 is the random weight of a particle after resampling (𝑊𝑡

(𝑖)
equals 𝑤𝑡

(𝑖)
, 

1/𝑐 or 0). 

Algorithm 2-3. OR Algorithm 

• Step 1: calculate the unique solution 𝑐 to the equation: ∑ min(1, 𝑐𝑤𝑡
(𝑖)) =

𝑛𝑑+1
𝑖=1  𝑛𝑑 . 

• Step 2: for 𝑖 = 1,… , 𝑛𝑑 + 1, if 𝑤𝑡
(𝑖)
≥ 1/𝑐 then particle 𝜏𝑡

(𝑖)
 is kept with its original 

weight 𝑤𝑡
(𝑖)

. Assume we keep 𝑞 particles. 

• Step 3: apply the stratified sampling algorithm in APPENDIX C to resample 𝑛𝑑 − 𝑞 

particles from the remaining 𝑛𝑑 + 1 − 𝑞 particles, each resampled particle is assigned a 

weight 1/𝑐. 

 

Note that when 𝑡 is small (e.g., 𝑡 =1, 2…), only 𝑡 distinctive particles are needed, 

corresponding to 𝜏𝑡 = 1,… , 𝑡 , respectively. When 𝑡  is large, we need to limit the 

maximum number of distinctive particles after resampling at each time 𝑡. Let 𝑛𝑑 denote 

this maximum limit and 𝑛𝑡  (𝑛𝑡 ≤ 𝑛𝑑 + 1) be the number of distinctive particles after 



www.manaraa.com

29 
 

 
 

Rao-Blackwellization of 𝜏𝑡
(𝑖)

 at time 𝑡, with the properly weighted samples {𝜏𝑡
(𝑖)
, 𝑤𝑡

(𝑖)
} 𝑖=1
𝑛𝑡  

with respect to 𝑃(𝜏𝑡|𝐲0:𝑡), the posterior density 𝑝(𝛃𝑡|𝐲0:𝑡) at time 𝑡 can be approximated 

as: 

 
�̂�(𝛃𝑡|𝐲0:𝑡) =∑𝑤𝑡

(𝑖)𝑝

𝑛𝑡 

𝑖=1

(𝛃𝑡|𝜏𝑡
(𝑖)
, 𝐲
𝜏𝑡
(𝑖)
:𝑡
) 

 

(2-14) 

The Rao-Blackwellized SMC algorithm with the OR method is summarized in 

Algorithm 2-4. 

Algorithm 2-4.   Rao-Blackwellized SMC with Optimal Resampling 

Set 𝑛𝑡 = 1, 𝜏1
(1)
= 1 and 𝑤1

(1)
= 1. 

For 𝑡 = 2, … , 𝑇: 

 For 𝑖 = 1, … , 𝑛𝑡: 

o Create two possible descendants 𝜏𝑡
(𝑖,1)

= 𝜏𝑡−1
(𝑖)

, 𝜏𝑡
(𝑖,2)

= 𝑡 of each 𝜏𝑡−1
(𝑖)

, calculate 

their associated weights 𝑤𝑡
(𝑖,1)

, 𝑤𝑡
(𝑖,2)

 based on Eq. (2-12) and normalize the 

weights such that ∑ ∑ 𝑤𝑡
(𝑖,𝑗)2

𝑗=1
𝑛𝑡
𝑖=1 = 1. 

 Combine duplicate particles into 𝑛𝑡 + 1 distinctive particles, the resulted samples are 

{𝜏𝑡
(𝑖)
, 𝑤𝑡

(𝑖)} 𝑖=1
𝑛𝑡+1 , where 𝜏𝑡

(𝑖)
= 𝜏𝑡

(𝑖,1)
, 𝑤𝑡

(𝑖)
= 𝑤𝑡

(𝑖,1)
, 𝑖 = 1,2, … , 𝑛𝑡; 𝜏𝑡

(𝑛𝑡+1) =

𝑡,𝑤𝑡
(𝑛𝑡+1) = ∑ 𝑤𝑡

(𝑖,2)𝑛𝑡
𝑖=1 . Set 𝑛𝑡 = 𝑛𝑡 + 1. 

 Parameter estimation: estimate 𝑝(𝛃𝑡|𝐲0:𝑡) based on Eq. (2-14). 

 Resampling: if 𝑛𝑡 = 𝑛𝑑 + 1 , using the OR method in Algorithm 2-3 to obtain 

{�̃�𝑡
(𝑖)
, �̃�𝑡

(𝑖)
} 𝑖=1
𝑛𝑑 ; set {𝜏𝑡

(𝑖)
, 𝑤𝑡

(𝑖)
 } 𝑖=1
𝑛𝑡−1 = {�̃�𝑡

(𝑖)
, �̃�𝑡

(𝑖)
} 𝑖=1
𝑛𝑑  and 𝑛𝑡 = 𝑛𝑑. 
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2.2.4 Steady State Detection Rule 

As the steady state can be characterized by a sustained ‘flat’ line segment in the 

piecewise linear model of signals, we can develop our detection rule based on the slope 

parameter of the last line segment of the piecewise linear model. Therefore, we define the 

steady state detection index as 𝜋𝑡 ≡ Pr(|𝛽1𝑡| ≤ 𝑠0|𝐲0:𝑡) where 𝑠0 is the slope threshold. 

At time 𝑡, the detection index can be estimated as: 

 

�̂�𝑡 =∑𝑤𝑡
(𝑖)
 Pr (|𝛽1𝑡| ≤ 𝑠0|𝜏𝑡

(𝑖), 𝐲
𝜏𝑡
(𝑖)
:𝑡
)

𝑛𝑡

𝑖=1

 (2-15) 

Based on Lemma 2-1, the marginal posterior distribution of 𝛽1𝑡 follows a non-

standardized student’s 𝑡 distribution. However, computing cumulative probability for the 

non-standardized student’s 𝑡  distribution is time-consuming. Note that the conditional 

posterior distribution of  𝛽1𝑡 given 𝜎𝑡
2 is: 

𝛽1𝑡 |𝜎𝑡
2, 𝜏𝑡

(𝑖), 𝐲
𝜏𝑡
(𝑖)
:𝑡
~𝑁 (μ

𝜏𝑡
(𝑖)
,𝑡

(2)
, 𝜎𝑡

2𝚺
𝜏𝑡
(𝑖)
,𝑡

(2,2)
) 

where μ
𝜏𝑡
(𝑖)
,𝑡

(2)
 is the second element of 𝛍

𝜏𝑡
(𝑖)
,𝑡

, 𝚺
𝜏𝑡
(𝑖)
,𝑡

(2,2)
 is the second diagonal element 

of 𝚺
𝜏𝑡
(𝑖)
,𝑡

, and  𝛍
𝜏𝑡
(𝑖)
,𝑡

 and 𝚺
𝜏𝑡
(𝑖)
,𝑡

 are obtained using Eq. (2-11). If we replace 𝜎𝑡
2 with its 

posterior mean value 𝐸 (𝜎𝑡
2|𝜏𝑡

(𝑖), 𝐲
𝜏𝑡
(𝑖)
:𝑡
) =

𝑏
𝜏𝑡
(𝑖)
,𝑡

𝑎
𝜏𝑡
(𝑖)
,𝑡
−1

, where 𝑎
𝜏𝑡
(𝑖)
,𝑡

, 𝑏
𝜏𝑡
(𝑖)
,𝑡

 are obtained using 

Eq. (2-11), the marginal posterior distribution of 𝛽1𝑡
(𝑖)
 can be approximated by the normal 

distribution as: 

𝛽1𝑡|𝜏𝑡
(𝑖), 𝐲

𝜏𝑡
(𝑖)
:𝑡
~̇𝑁 (μ

𝜏𝑡
(𝑖)
,𝑡

(2)
,
𝑏
𝜏𝑡
(𝑖)
,𝑡

𝑎
𝜏𝑡
(𝑖)
,𝑡
− 1

𝚺
𝜏𝑡
(𝑖)
,𝑡

(2,2)
) 
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Based on this approximation, the corresponding probabilities of each particle can 

be calculated much faster. From our experience �̂�𝑡  typically increases quickly and 

becomes close to one after the data reach the steady state. So the detection result is pretty 

robust to small errors in approximating �̂�𝑡. 

At each time 𝑡, if  �̂�𝑡  is larger than a given threshold value, 𝜋0 , we stop the 

algorithm and consider that a steady state is detected at time 𝑡 . Similarly, since  �̂�𝑡 

typically increases quickly and becomes close to one after the data reach the steady state, 

the detection results are robust to small change of  𝜋0. In this following of this chapter, 

we set 𝜋0 to be 0.9 for all the examples. 

2.3 Numerical Study 

2.3.1 Simulated Signals and Model Parameter Setup 

Simulations based on artificially generated signals are first conducted to evaluate 

the performance of our proposed steady state detection algorithm. A signal is generated 

based on the superposition of a bias functions and the noise. This chapter uses four types 

of bias functions: linear, quadratic, exponential and oscillating, as shown in Table 2-1. 

These are the most commonly tested functions for off-line steady state detection 

algorithms in the discrete-event simulation literature. For the bias direction of the first 

three functions, without loss of generality, we use the negative bias which represents the 

biased data starting below the steady state mean (Hoad et al., 2010). A linearly 

decreasing function is chosen for the amplitude of the oscillating signals. For the noises, 

we use three types of autoregressive model: random Gaussian error (AR(0)), AR(1) and 

AR(2), as shown in the following Table 2-2. The signal, 𝑦(𝑡), is generated based on the 

addition of the bias function 𝐵(𝑡) in Table 2-1 and the noise 𝑟𝑡  in Table 2-2, namely 
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𝑦(𝑡) = 𝐵(𝑡) + 𝑟𝑡, 𝑡 = 1,… ,𝑁. 

Table 2-1. Four types of bias functions 

Signal Bias function 

Linear                      𝐵(𝑡) = {

𝑡

𝑇0
ℎ,     𝑡 = 1,… , 𝑇0

ℎ, 𝑡 = 𝑇0 + 1,… ,𝑁
 

Quadratic          𝐵(𝑡) = {
ℎ (1 −

(𝑡−𝑇0)
2

(𝑇0−1)
2) ,     𝑡 = 1,… , 𝑇0

ℎ,                     𝑡 = 𝑇0 + 1,… ,𝑁
 

Exponential            𝐵(𝑡) = {
ℎ (1 − 10

−
1−𝑡

𝑇0−1) ,     𝑡 = 1,… , 𝑇0

𝑦(𝑇0),               𝑡 = 𝑇0 + 1,… ,𝑁
 

Oscillating                     𝐵(𝑡) = {
ℎ
𝑇0−𝑡

𝑇0−1
𝑠𝑖𝑛 (

𝜋𝑡

𝑓
) ,     𝑡 = 1,… , 𝑇0

0,                   𝑡 = 𝑇0 + 1,… ,𝑁
(𝑓 =

𝑇0

10
) 

 

For all signals 𝑇0 is the true transition point to the steady state. In selecting the 

prior parameters, a non-informative prior with  𝛍0 = [
0
0
] and  𝚺0 = [

10000 0
0 10000

]  is 

used for 𝛃𝑡. For the noise variance 𝜎2, its prior parameters 𝑎0 and 𝑏0 are set to be 10 and 

0.1, respectively. For the prior transition probability 𝑝, any value between 0.1 and 0.5 can 

work well and here we use 𝑝 =  0.2. The maximum number of distinctive particles after 

resampling is chosen to be 𝑛𝑑 = 16 for all simulations in this chapter. 

Table 2-2. Equations and parameter values for three types of noises 

Types Equation Parameter values 

AR(0) 𝑟𝑡 = 휀𝑡 휀𝑡~𝑁(0, 𝜎𝑡
2) 

AR(1) 𝑟𝑡 = 𝜑1𝑟𝑡−1 + 휀𝑡 𝜑1 = 0.6 

AR(2) 𝑟𝑡 = 𝜑2𝑟𝑡−1 + 𝜑3𝑟𝑡−2 + 휀𝑡 𝜑2 = −0.25,𝜑3 = 0.5 
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2.3.2 Illustration of the Steady State Detection 

We illustrate our proposed algorithm on steady state detection by using a 

simulated linear signal with noise level 𝜎 =  0.06, ℎ =  1  and 𝑇0  =  200 . The slope 

threshold 𝑠0 is set to be 0.0025. Figure 2-3 shows the corresponding detection process. It 

can be seen that �̂�𝑡 jumps abruptly to large values close to 1 shortly after 𝑇0 (the true 

steady state transition point). Besides, at time 𝑡 = 100, 200 and 500,  the estimate of the 

posterior probability of the latest change-point, �̂�(𝜏𝑡|𝐲0:𝑡), is almost concentrated near 

the true change-points: 1 (𝑡 ≤ 200) or 200 (𝑡 > 200).  Processing each signal with 500 

time steps by the proposed algorithm only takes an average of 0.9 seconds in MATLAB 

running on a 3.40 GHz Intel processor, which is much lower than that of the PF method 

in Wu et al. (2015) (12 seconds for 500 time steps). Meanwhile, by sampling only one 

variable based on the Rao-Blackwellization method and employing the efficient OR 

resampling algorithm, our method uses at most 16 particles for each time step, which is 

substantially lower than the 1000 particles used for each time step by the PF method of 

Wu et al. (2015). In addition, using normal approximations for calculating the pdf of 

student’s 𝑡 distribution leads to further reduction of computational time to an average of 

0.6 seconds and similar detection performance. This example shows that our algorithm 

can detect the change-point with timeliness and high computational efficiency. 
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Figure 2-3. Illustration of steady state detection for linear signal: simulated signal (top), 

estimated posterior probability of the latest change-point at different time steps (middle), 

and the detection index �̂�𝑡 (bottom). 

Many signals in practice have a decaying variance with a fixed mean. When the 

signal enters the steady state, the variance is small and stable. To see how well our 

algorithm performs to detect the transition to steady state for such signals, we simulate 

the signal with zero mean and the noise amplitude as follows: 

𝜎(𝑡) = {
30(𝑇0−𝑡)/(𝑇0−1)𝜎0, if 𝑡 ≤ 𝑇0
𝜎0                           , if 𝑡 > 𝑇0

 

where 𝜎0 = 0.1. The following Figure 2-4 shows that our detection algorithm is also 

well-performed for such a signal.  
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Figure 2-4. Steady state detection for a signal with zero mean and exponentially decaying 

variance: simulated signal (top), and the detection index �̂�𝑡 (bottom). 

2.3.3 Performance Evaluation 

Following Wu et al. (2015), we consider the false alarm rates (FAR) and 

deviation of the estimated steady state transition point �̂� from the true transition point T0 

(also called detection bias) to evaluate the performance of the proposed on-line steady 

state detection algorithm. The FAR is the probability that �̂� < 𝑇0.   It is considered 

because in some situations the cost of early detection is higher than that of delayed 

detection. The FAR usually serves as an auxiliary evaluation metric. The main evaluation 

metric in this chapter is the weighted standard detection error (WSDE), as defined in Wu 

et al. (2015): 
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𝑊𝑆𝐷𝐸 = √
1

𝑁𝑠 
∑𝑤(�̂�𝑖)

𝑁𝑠 

𝑖=1

(�̂�𝑖 − 𝑇0)2       𝑤(�̂�𝑖) = {
𝑤 ∈ (0,1], �̂�𝑖 ≥ 𝑇0
1,               �̂�𝑖 < 𝑇0

    
(2-16) 

where �̂�𝑖  denotes the estimated change-point in the ith replication and 𝑁𝑠  is the 

total number of replications used for each type of signals in the simulation. When w = 1, 

WSDE is the root mean square deviation (RMSD) of �̂�𝑖 from 𝑇0. When w < 1, larger 

penalty is given to early detection than late detection in WSDE.   

2.3.4 Comparison with Existing On-Line Methods 

In this section, we compare the proposed method in this chapter with three other 

existing on-line steady state detection methods: the PF method (Wu et al., 2015), the 

SDM method (Holly et al., 1989; Bethea and Rhinehart, 1991; Wu et al., 2013), and the 

VRT method (Crow et al., 1960; Cao and Rhinehart, 1995).  The PF method (Wu et al., 

2015) is the most recently developed on-line steady state detection method in the 

literature. It is based on the standard SMC, or the particle filter algorithm, and 

incorporates several improvement strategies such as the partial Gibbs resample-moves 

technique. The other two methods, the SDM and VRT, both incorporate a moving data 

window based on which they estimate either the slope or the variance to determine if the 

signal enters the steady state. In this section, we refer to the proposed Rao-Blackwellized 

SMC method in this chapter as RBSMC method. 

Each type of signal is generated by combining a bias function in Table 2-1 and a 

noise type in Table 2-2. For the bias function, we set ℎ =  1 and test two values of 𝑇0: 

𝑇0  =  200  and 𝑇0  =  300 . Three noise amplitudes 𝜎𝑡 = 0.06, 0.1, 0.14  are used for 

AR(0) and 𝜎𝑡 = 0.06, 0.1 are used for AR(1) and AR(2). As in Wu et al. (2015), we use 
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𝑁𝑠 = 500 replications for each type of signals and the detection parameters (window 

size, thresholds) of all methods are selected to minimize the WSDE with 𝑤 =  1. For our 

proposed method, we set slope threshold 𝑠0 =  0.0021 for all signals. 

Figure 2-5 shows the WSDE as functions of the penalty weight 𝑤 for each noise 

autoregressive type. As we can see, the proposed RBSMC method and PF are much more 

accurate than SDM, VRT in terms of the WSDE in all penalty weights. Besides, the 

proposed RBSMC method is slightly better comparing with the PF method in most of the 

penalty weights. 

 

Figure 2-5. The weighted standard detection error (WSDE) of the proposed RBSMC, PF, 

SDM, VRT as a function of the penalty weight 𝑤 for AR(0), AR(1) and AR(2). 

The detailed results for the AR(0) noise with 𝑤 =  1 are shown in Table 2-3. 

From Table 2-3, it can be seen that the two SMC methods (RBSMC and PF) offer the 

most competitive detection results in terms of the WSDE and FAR with signals of 

various bias functions. Both of them have consistently better performance than the 

moving-window based methods (SDM and VRT).  
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Table 2-3. Comparison of RBSMC, PF, SDM and VRT for w = 1 and noise type AR(0). 

The detection parameters are (1) RBSMC, 𝑠0 = 0.0021; (2) PF, 𝑠0 = 0.0022; (3) SDM, 

window size 𝑚 = 50, threshold=8×10−5; (4) VRT, 𝑚 = 98, threshold=0.6 

Signal 𝜎 

WSDE FAR 

RBS-

MC 
PF SDM VRT 

RBS-

MC 
PF SDM VRT 

Linear 

h=1, 

T0=200 

0.06 52.6 42.0 59.8 78.6 0 0 0 0 

0.10 55.7 53.9 60.7 66.1 0 0 0 0 

0.14 59.6 64.5 57.6 60.4 0 0 0 0 

h=1, 

T0=300 

0.06 46.7 40.9 58.0 70.9 0 0 0 0 

0.10 49.9 53.1 55.9 56.6 0 0 0 0.04 

0.14 53.5 70.4 58.6 121.6 0.01 0.01 0.03 0.75 

Quadratic 

h=1, 

T0=200 

0.06 17.6 12.1 33.6 37.6 0.01 0.11 0 0 

0.10 22.8 21.2 31.9 26.7 0.03 0.04 0.02 0.04 

0.14 26.3 33.7 28.2 18.5 0.06 0.06 0.14 0.36 

h=1, 

T0=300 

0.06 20.0 33.8 22.4 16.3 0.89 1 0.11 0.33 

0.10 24.4 28.1 23.9 37.5 0.81 0.93 0.45 0.83 

0.14 29.9 22.4 34.5 72.8 0.71 0.62 0.62 0.93 

Exponential 

h=1, 

T0=200 

0.06 23.3 16.6 45.9 44.4 0.01 0.12 0 0 

0.10 28.1 26.3 40.5 23.2 0.07 0.08 0.03 0.30 

0.14 31.7 35.0 34.8 26.1 0.12 0.06 0.17 0.73 

h=1, 

T0=300 

0.06 37.6 61.7 35.5 27.2 0.93 1 0.04 0.51 

0.10 45.4 49.4 32.2 67.3 0.85 0.98 0.38 0.96 

0.14 51.1 40.1 55.7 107.8 0.85 0.88 0.82 0.99 

Oscillating 

h=1, 

T0=200 

0.06 23.1 27.1 94.9 74.4 0 0.01 1 0 

0.10 29.3 27.6 90.2 61.5 0 0.04 0.99 0 

0.14 38.7 26.6 94.0 54.1 0 0.06 1 0 

h=1, 

T0=300 

0.06 9.4 23.0 156 63.6 0.39 0.04 1 0 

0.10 19.5 25.7 156 49.8 0.21 0.2 0.99 0 

0.14 32.6 29.4 152 40.6 0.07 0.55 1 0 

Overall 37.3 39.1 59.9 60.3 0.25 0.28 0.38 0.28 

The advantage of the SMC-based methods over the moving-window based 

methods can be understood intuitively as follows: The SMC-based methods are based on 

the piecewise linear model in Eq. (2-1) with multiple unknown change-points. Therefore 

they behave as methods with adaptive ‘window’ sizes. Compared with the moving-

window based methods with a fixed ‘window’ size, SMC-based methods are very 
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flexible in adjusting their ‘window’ sizes based on the observed signals to give much 

more robust detection performance. 

Comparing the RBSMC and PF methods, the RBSMC has slightly better overall 

performance in terms of smaller WSDE (37.3 vs. 39.1) and smaller FAR (0.25 vs. 0.28), 

and using normal approximations for calculating the pdf of student’s 𝑡 distribution in 

RBSMC leads to the same overall performance (see APPENDIX D for detailed results). 

Most importantly, the main advantage of the RBSMC method to the PF method is in the 

substantial saving of computational cost. This significant saving of computational cost 

makes the RBSMC method a much preferred method for many on-line applications 

where quick processing of the data in real time is critical.  

2.3.5 Application to Steady State Detection in Micro/Nanoparticle Dispersion 

Process 

In this section, we apply the RBSMC algorithm to real signals called cavitation 

noise power (CNP) signals from the ultrasonic-cavitation based nanoparticle dispersion 

process. Currently, the micro/nanoparticle research has attracted intense scientific interest 

because of its potential applications in biomedical, optical and electrical fields. In these 

applications, micro/nanoparticles need to be dispersed evenly into the base materials 

before use to improve the material properties. However, the particles often cluster 

together as a result of high surface energy and large surface-to-volume ratio. The 

ultrasonic cavitation method can be used for effective dispersion of micro/nanoparticles. 

The dispersion process can be monitored by detecting the steady state of CNP signals 

based on the fact that the steady state of CNP signals corresponds to the maximum 

dispersion extent at the ultrasonic power level. Please refer to Wu et al. (2013) for details 
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on the ultrasonic cavitation process, the experimental setup used to collect the data, and 

the method to obtain the CNP signals. 

Figure 2-6 shows the detection results for the CNP signals with ultrasonic power 

30W and 50W, respectively, in the dispersion of 30 g Al2O3. The off-line method 

EWMA-MSER (Wu et al., 2013) is used as a benchmark method to evaluate the proposed 

method. It can be seen that the detection results (red solid line) of the proposed RBSMC 

method are quite close to those of the off-line method (black dashed line). 

 

Figure 2-6. Steady state detection for the CNP signal with ultrasonic power 30W and 

50W in the dispersion of 30 g Al2O3. 

2.4 Summary 

In this chapter, we study the problem of on-line steady state detection using a 

multiple change-point model and sequential Monte Carlo methods. A piecewise linear 

model is used to approximate the signal. Within the Bayesian framework, the posterior 

densities of model parameters can be sequentially updated given the latest observations. 

The stopping criterion for detecting the steady state is established based on the fact that 

the steady state can be characterized by a sustained ‘flat’ line segment in the piecewise 
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linear model. 

The main contribution of our proposed algorithm is its high computational 

efficiency based on the Rao-Blackwellization technique. By solving analytically for the 

conditional distribution of the model parameters, estimating the joint posterior 

distribution of four variables in the state vector requires sampling from only a one 

dimensional posterior distribution. This leads to substantial variance reduction of the 

Monte Carlo estimates and the use of significantly smaller number of particles than the 

standard SMC algorithm, while achieving comparable or better estimation accuracy. In 

addition, by applying the so-called Optimal Resampling method and eliminating 

duplicate particles, the robustness and timeliness of steady state detection is significantly 

improved by using the information of the particles more efficiently. 

The performance of our proposed method is evaluated through both artificially 

simulated signals and a real data example from the ultrasonic-cavitation based 

nanoparticle dispersion process. Results demonstrate the robustness of the proposed 

algorithm for various types of signals with different levels of noises, and much faster 

computational time compared to the standard PF method.  
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CHAPTER 3. A NEW BAYESIAN ON-LINE INFERENCE METHOD FOR THE 

SHORT-RUN SPC 

In short production runs of the statistical quality control process, the major 

challenge is that there exists little or no historical in-control data. The data necessary to 

accurately estimate the process parameters and the control limits for standard control 

charts are usually not available prior to a production run. In this chapter, we propose new 

methods under the Bayesian framework to detect on-line whether the mean of the short-

run process has exceeded a critical threshold. Our model modifies the original model 

proposed by Tsiamyrtzis and Hawkins (2005) and can be more flexible in handling linear 

trends of the process. Under the modified modeling framework, the exact Bayesian 

method based on Fearnhead and Liu (2007) can be used to obtain a significantly reduced 

number of mixtures in the posterior distribution of process mean, which requires 

substantially less computational and memory cost. Numerical studies based on simulated 

signals and application to degradation data are used to evaluate the performance of the 

proposed method and compare with the method proposed by Tsiamyrtzis and Hawkins 

(2005). Our proposed method is shown to establish a more robust estimation performance 

while being less sensitive to parameter misspecifications and much more computationally 

efficient. 

The remainder of this chapter is organized as follows. A new model formulation 

of the short-run process is introduced in Section 3.1. Sections 3.2 and 3.3 give a detailed 

description on the exact Bayesian method and the corresponding approximate method 

based on particle filter for efficient detection of the out-of-control state of the process 



www.manaraa.com

43 
 

 
 

mean. Extensive simulation studies as well as application to degradation data are 

presented in Section 3.4.  A summary is provided in Section 3.5. 

3.1 Motivation and Model Formulation 

In traditional control charts, such as the CUSUM control chart, we are mainly 

concerned with whether the process remains in control at the target value 𝜃0 or shifts to 

some out-of-control value of the mean 𝜃1(𝜃1 ≠ 𝜃0). Assuming that the in-control state is 

stable, we have a sequence of hypothesis tests at different time points:  

{
𝐻0: 𝜃𝑡 = 𝜃0
𝐻1: 𝜃𝑡 = 𝜃1

, 𝑡 = 1, 2, …   

where 𝜃𝑡  is the process mean at time 𝑡. In standard control chart methods, the 

value of 𝜃0 is estimated through a long phase I data gathering. The control limits can be 

obtained based on 𝜃0 and 𝜃1 to help decide if the process is out-of-control at some time 

point.  

However, for the unstable in-control state where the in-control process mean may 

have continuous small changes over time, the aforementioned framework can no longer 

be used. As an extension, Tsiamyrtzis and Hawkins (2005) considered making a sequence 

of more generic decisions between:  

{
𝐻0: 𝜃𝑡 ≤ 𝑀
𝐻1: 𝜃𝑡 > 𝑀

, 𝑡 = 1, 2, … 

where 𝑀 is the pre-specified upper threshold of 𝜃𝑡. Thus our concern at each time 

point becomes whether the mean of the short-run process has exceeded a critical 

threshold so that some corrective action is needed. Although this is a one-sided test 

assuming the jumps are upward, it can be easily adapted to the case where the jumps are 

downward. 
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Suppose the noisy signal is denoted as 𝐲1:𝑁 = (𝑦1, 𝑦2, … , 𝑦𝑁), where 𝑁 is the total 

length of the signal. To provide a theoretical basis that helps make the decision at each 

time, Tsiamyrtzis and Hawkins (2005) introduced a random walk plus a fixed size 

random jump model (referred to as TH model in the rest of this chapter), which is:  

𝜃𝑡|𝜃𝑡−1~{
𝑁(𝜃𝑡−1, 𝜎𝑅𝑊

2 )        with probability 1 − 𝑝 

𝑁(𝜃𝑡−1 + 𝛿, 𝜎𝑅𝑊
2 )        with probability 𝑝 

, 

𝑦𝑡 = 𝜃𝑡 + 휀𝑡, 휀𝑡~𝑁(0, 𝜎
2) 

(3-1) 

The TH model suggests that the mean of the short-run process drifts according to 

a normal random walk while being subject to some occasional jumps with probability 𝑝. 

𝜎𝑅𝑊
2  is the random walk variance and 𝛿 is the fixed jump size that is assumed as known. 

𝜎2 quantifies the measurement variability of the process. Under the Bayesian framework, 

this model leads to a closed-form solution of the posterior distribution 𝑝(𝜃𝑡|𝐲1:𝑡), based 

on which a decision rule is obtained. It is shown to be effective in detecting whether the 

mean exceeds the critical threshold in the short-run process. 

However, the TH model suffers from two major limitations. Firstly, it is 

computationally intensive. Tsiamyrtzis and Hawkins (2005) derived the posterior 

distribution at each time 𝑡 as 𝑝(𝜃𝑡|𝐲1:𝑡) = ∑ 𝛼𝑖
(𝑡)
𝑁(𝜃𝑖

(𝑡)
, �̂�𝑡

2)2𝑡−1
𝑖=0 , which is a mixture of 

2𝑡 normal distributions. Please refer to Theorem 1 of Tsiamyrtzis and Hawkins (2005) for 

the detailed expressions for 𝛼𝑖
(𝑡)

,  𝜃𝑖
(𝑡)

, and �̂�𝑡
2. The exponentially increasing number of 

mixtures is a result of the dependence of 𝜃𝑡 before and after each of the occasional jumps 

in model (3-1). It requires demanding computational and memory cost. For example, 

even when 𝑡 is moderately small, say 𝑡 = 25, implementing the TH method can cause a 

computer to run out of memory. Secondly, it assumes the jump size 𝛿 is known. And 
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whether the jump size is correctly specified can actually lead to very different estimation 

performance. In real practice, however, such assumption is usually too restrictive since 

we seldom have the exact knowledge of the jump size. 

To overcome these drawbacks, in this chapter we propose a new model that leads 

to highly efficient calculations of the posterior distribution 𝑝(𝜃𝑡|𝐲1:𝑡), while requiring no 

exact knowledge of the jump size. Specifically, we assume:  

𝜃𝑡|𝜃𝑡−1~{
𝑁(𝜃𝑡−1, 𝜎𝑅𝑊

2 )           with probability 1 − 𝑝 

𝑁(𝜇𝐽, 𝜎𝐽
2)                          with probability 𝑝 

, 

𝑦𝑡 = 𝜃𝑡 + 휀𝑡, 휀𝑡~𝑁(0, 𝜎
2) 

(3-2) 

Rather than imposing a fixed and known jump size, our model in Eq. (3-2) makes 

a more general assumption on the jump size by considering it follows a normal 

distribution with mean 𝜇𝐽  and a large variance 𝜎𝐽
2  that are independent of 𝜃𝑡−1 . The 

assignment of large values to 𝜎𝐽
2 represents the vagueness of our knowledge about the 

jump, which is more close to the reality since in practice the magnitude of an occasional 

jump is typically unknown. Additionally, based on our model, it can be seen that the 

process mean before and after an occasional jump are independent, which enables us to 

take advantage of the exact Bayesian method (Fearnhead and Liu, 2007) to dramatically 

reduce the computational cost in the posterior inference of the process mean.  

As discussed previously, when a process is subject to degradations, the data often 

exhibit some linear trends, or piecewise linear trends. Therefore, we generalize our model 

(3-2) to a more flexible model that can also handle linear trends on the basis of a 

piecewise linear formulation, which is expressed as: 
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(𝛃𝑡, 𝜎𝑡
2)|(𝛃𝑡−1, 𝜎𝑡−1

2 ) =  {
(𝛃𝑡−1, 𝜎𝑡−1

2 )  with probability 1 − 𝑝 

(�̃�, �̃�2)                  with probability 𝑝 
,  

𝑦𝑡 = 𝜃𝑡 + 휀𝑡 = 𝐱𝑡𝛃𝑡 + 휀𝑡, 휀𝑡~𝑁(0, 𝜎𝑡
2) 

(3-3) 

where 𝛃𝑡 = [
𝛽1𝑡
𝛽0𝑡
], 𝜃𝑡 = 𝐱𝑡𝛃𝑡 ,  𝐱𝑡 = [𝑡 1] , and �̃� and �̃�2  are random samples 

generated independently from some prior distributions 𝜋𝛃(∙) and 𝜋𝜎(∙), respectively. In 

model (3-3), the observation 𝑦𝑡 follows a piecewise linear trend while being subject to 

some occasional jumps with randomly changing slopes, intercepts and variance. The 𝛽1𝑡 

and 𝛽0𝑡 correspond to the slope and intercept at time 𝑡. The measurement noise variance 

𝜎𝑡
2  at time 𝑡  varies across different line segments (between occurrence of occasional 

jumps), while being unchanged within each line segment. If little knowledge is available 

for �̃�2 and �̃� after an occasional jump, non-informative priors can be used for 𝜋𝛃(∙) and 

𝜋𝜎(∙).  

Based on our newly proposed model (3-2) and model (3-3), in the following 

sections, we will have detailed discussions on the exact Bayesian method (Fearnhead and 

Liu, 2007) for efficient inference of the process parameters and make decisions on 

whether the process mean crosses a critical threshold. 

3.2 On-Line Exact Bayesian Inference of the Process Mean 

3.2.1 On-Line Exact Bayesian Inference on the Posterior of Occasional Jumps 

In this subsection, we will focus on making inference of the process mean 𝜃𝑡 

under the Bayesian framework, which facilitates our sequential decisions on whether the 

process mean has exceeded a critical threshold. Specifically, to make decisions at time 𝑡, 

first we need to obtain the posterior distribution of the process mean 𝑝(𝜃𝑡|𝐲1:𝑡) . 
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Conditioning on possible values of 𝜏𝑡, the location of the latest occasional jumps up to 

time 𝑡, we have:  

 

𝑝(𝜃𝑡|𝐲1:𝑡) =∑𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡) 𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲1:𝑡)

𝑡

𝑠=1

 

                     =  ∑𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡) 𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)

𝑡

𝑠=1

 

 

 

(3-4) 

The last equation in Eq. (3-4) is due to our model assumption that process mean 

before and after an occasional jump are independent. If an occasional jump occurs at time 

𝑡, we have 𝜏𝑡 = 𝑡; otherwise 𝜏𝑡 = 𝜏𝑡−1. Based on our model (3-2) and model (3-3), it is 

easy to see that the prior transition probability of 𝜏𝑡 is 𝑃(𝜏𝑡 =  𝑡|𝜏𝑡−1) = 𝑝.  

As indicated by Eq. (3-4), we need to know the terms 𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡)  and 

𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) in order to obtain 𝑝(𝜃𝑡|𝐲1:𝑡). The first term 𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡), 𝑠 = 1,… , 𝑡 

can be calculated based on Fearnhead and Liu (2007), who studied multiple change-point 

detection problems under the assumption that model parameters before and after the 

change-point are independent. An exact Bayesian (EB) method is developed in Fearnhead 

and Liu (2007) to find posterior distributions of the latest change-points. Since both our 

model (3-2) and model (3-3) satisfy the independent assumption in Fearnhead and Liu 

(2007), their method can be applied for inference of 𝜏𝑡. Denote observations from time 𝑠 

to 𝑡  as 𝐲𝑠:𝑡 = (𝑦𝑠, 𝑦𝑠+1, … , 𝑦𝑡)  and the posterior probabilities of 𝜏𝑡  at time 𝑡  as 𝑤𝑡
𝑠 =

𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡), 𝑠 = 1,… , 𝑡. Based on the results from Fearnhead and Liu (2007), each 𝑤𝑡
𝑠 

can be sequentially updated as:  

 
𝑤𝑡
𝑠 ∝ {

𝑃(𝑠, 𝑡)

𝑃(𝑠, 𝑡 − 1)
∙ (1 − 𝑝) ∙ 𝑤𝑡−1

𝑠            if  𝑠 < 𝑡 

𝑃(𝑡, 𝑡) ∙ 𝑝                                           if  𝑠 = 𝑡

 

 

(3-5) 
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where 𝑃(𝑠, 𝑡) = 𝑃(𝐲𝑠:𝑡|𝐲𝑠:𝑡 are in the same line segment)  and its calculation will be 

discussed later. For the second term 𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) involved in Eq. (3-4), detailed 

discussions on finding its analytical form are presented in the following subsections 

based on model (3-2) and model (3-3), respectively. 

3.2.2 On-Line Inference for the Random Walk Plus Random Jump Model 

For our model (3-2), we assume the measurement noise variance 𝜎2 is known and 

is constant over time. This is the same assumption made in the TH method. The densities 

𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) , 𝑠 = 1,… , 𝑡  can be obtained via the Kalman filter (KF) (Kalman, 

1960), which is shown in the following Lemma 3-1 (the proof can be also found in 

APPENDIX E). 

Lemma 3-1. For model (3-2), let 𝜇𝜃𝑠,𝑡 , 𝜎𝜃𝑠,𝑡
2  , 𝑘𝑠,𝑡  be parameters associated with the 

posterior distribution of the process mean for observations 𝐲𝑠:𝑡. Then:  

(1) If 𝑠 < 𝑡: 𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)~𝑁 (𝜇𝜃𝑠,𝑡 , 𝜎𝜃𝑠,𝑡
2 ) with 𝜇𝜃𝑠,𝑡 = 𝑘𝑠,𝑡−1𝜇𝜃𝑠,𝑡−1 + (1 − 𝑘𝑠,𝑡−1)𝑦𝑡 

and  𝜎𝜃𝑠,𝑡
2 = 𝜎2(1 − 𝑘𝑠,𝑡−1) , where 𝑘𝑠,𝑡−1 =

𝜎2

𝜎𝜃𝑠,𝑡−1
2 +𝜎𝑅𝑊

2 +𝜎2
; 

𝑃(𝑠,𝑡)

𝑃(𝑠,𝑡−1)
=

𝑝(𝑦𝑡|𝐲𝑠:𝑡−1)~𝑁 (𝜇𝜃𝑠,𝑡−1 , 𝜎𝑅𝑊
2 + 𝜎2 + 𝜎𝜃𝑠,𝑡−1

2 ). 

(2) If 𝑠 = 𝑡 : 𝑝(𝜃𝑡|𝜏𝑡 = 𝑡, 𝑦𝑡)~𝑁 (𝜇𝜃𝑡,𝑡 , 𝜎𝜃𝑡,𝑡
2 )  with 𝜇𝜃𝑡,𝑡 = 𝑘𝑡,𝑡𝜇𝐽 + (1 − 𝑘𝑡,𝑡)𝑦𝑡  and 

𝜎𝜃𝑡,𝑡
2 = 𝜎2(1 − 𝑘𝑡,𝑡), where 𝑘𝑡,𝑡 =

𝜎2

𝜎𝐽
2+𝜎𝑅𝑊

2 +𝜎2
; 𝑃(𝑡, 𝑡) = 𝑝(𝑦𝑡)~𝑁(𝜇𝐽, 𝜎𝑅𝑊

2 + 𝜎2 + 𝜎𝐽
2). 

where the terms 
𝑃(𝑠,𝑡)

𝑃(𝑠,𝑡−1)
 and 𝑃(𝑡, 𝑡) are used for updating 𝑤𝑡

𝑠 in Eq. (3-5). 

In this chapter, we refer to our exact Bayesian method using KF as the EBKF 

method. For the EBKF method, based on Lemma 3-1, Eq. (3-4) becomes:  
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𝑝(𝜃𝑡|𝐲1:𝑡) =∑𝑤𝑡

𝑠𝑁 (𝜇𝜃𝑠,𝑡 , 𝜎𝜃𝑠,𝑡
2 )

𝑡

𝑠=1

 

 

(3-6) 

Eq. (3-6) suggests that the posterior distribution of the process mean in the EBKF 

contains a mixture of only 𝑡  normal distributions at each time 𝑡 , which substantially 

lowers the computational and memory cost compared to the exponentially increasing 

number of mixtures in the TH method. Therefore, the EBKF is much more preferable in 

the situation where the run length of the process is not very small. 

To help make the decision on whether the process mean has exceeded the critical 

threshold 𝑀 at time 𝑡, we adopt the same decision rule as in the TH method where we 

calculate the posterior probability 𝑃𝑡 = Pr(𝜃𝑡 > 𝑀|𝐲1:𝑡)  and accept the alternative 

hypothesis iff 𝑃𝑡 ≥ 𝛼 (𝛼 is a cutoff value between 0.5 and 1). The process is continued 

until the null hypothesis is rejected, at which time we stop the process and take some 

corrective actions. Mathematically, based on Eq. (3-6), the decision rule in the EBKF can 

be obtained as: 

 
𝑃𝑡 = 1 − Pr(𝜃𝑡 ≤ 𝑀|𝐲1:𝑡) = 1 −∑𝑤𝑡

𝑠Φ(
𝑀 − 𝜇𝜃𝑠,𝑡
𝜎𝜃𝑠,𝑡

)

𝑡

𝑠=1

 (3-7) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal 

distribution. 

In summary, our proposed EBKF method based on model (3-2) for detecting on-

line whether the process man has exceeded a critical threshold is given in the following 

Algorithm 3-1 as follows. 
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Algorithm 3-1. The EBKF for Detecting On-Line Whether 𝜃𝑡 has Crossed a Critical 

Threshold 

1. At 𝑡 = 1, initializing 𝑃1 = 0 and 𝑃(𝜏1 = 1|𝑦1) = 1. 

2. For 𝑡 = 2,⋯ ,𝑁 

• For 𝑠 = 1,⋯ , 𝑡  

                         Calculate the un-normalized 𝑤𝑡
𝑠 based on Lemma 3-1 and Eq. (3-5). 

                  End 

• Normalize 𝑤𝑡
𝑠 (𝑠 = 1,⋯ , 𝑡) such that ∑ 𝑤𝑡

𝑠𝑡
𝑠=1 = 1. 

• Calculate the detection index 𝑃𝑡  based on Eq. (3-7); if 𝑃𝑡 ≥ 𝛼 , the process 

mean is considered exceeding the critical threshold and the algorithm is 

terminated. 

      End 

3.2.3 On-Line Inference for the Piecewise Linear Model 

To handle linear trends in a process, we use the piecewise linear model 

formulation in Eq. (3-3), which satisfies the independent assumption made in Fearnhead 

and Liu (2007). So the exact Bayesian method can be applied for posterior inference in 

Eq. (3-3).  Since the measurement noise variance 𝜎𝑡
2 is assumed as unknown in Eq. (3-3), 

we refer to this method as EBPLUV. In EBPLUV, each linear segment is assigned a 

common conjugate prior distribution of 𝜎𝑡
2 and 𝛃𝑡  using inverse Gamma and Gaussian 

distribution as:  
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𝜎𝑡
2~𝜋𝜎 = 𝐼𝐺 (

𝑣

2
,
𝛾

2
) 

𝛃𝑡|𝜎𝑡
2~𝜋𝛃 = 𝑁(𝛍0, 𝜎𝑡

2𝚺0) 

where 𝑣, 𝛾, 𝛍0, 𝚺0 are specified prior parameters. If little knowledge is available 

for 𝜎𝑡
2 and 𝛃𝑡  at the beginning of each new line segment, the prior parameters can be 

selected to make the prior distributions relatively non-informative.  

Define the design matrix 𝐗𝑡
𝑠 = [

𝑠 1
𝑠 + 1 1
⋮ ⋮
𝑡 1

] and 

𝐌𝑡
𝑠 = ((𝐗𝑡

𝑠)𝑇𝐗𝑡
𝑠 + 𝚺0

−1)−1 

𝐍𝑡
𝑠 = 𝚺0

−1𝛍0 + (𝐗𝑡
𝑠)𝑇𝐲𝑠:𝑡

𝑇  

𝛍𝑡
𝑠 = 𝐌𝑡

𝑠𝐍𝑡
𝑠 

𝑑𝑡
𝑠 = 𝑡 − 𝑠 + 𝑣 + 1 (𝑑𝑡

𝑠 > 2) 

𝐻𝑡
𝑠 = 𝐲𝑠:𝑡𝐲𝑠:𝑡

𝑇 + 𝛾 + 𝛍0
𝑇𝚺0

−1𝛍0 − (𝐍𝑡
𝑠)𝑇𝐌𝑡

𝑠𝐍𝑡
𝑠 

(3-8) 

The densities 𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) , 𝑠 = 1,… , 𝑡  in Eq. (3-4) can be obtained 

analytically based on the following Lemma 3-2 (the proof is included in APPENDIX F). 

Lemma 3-2. Suppose 𝜎𝑡
2~𝐼𝐺 (

𝑣

2
,
𝛾

2
) and 𝛃𝑡|𝜎𝑡

2~𝑁(𝛍0, 𝜎𝑡
2𝚺0), we have: 

(1) (𝛃𝑡|𝜎𝑡
2, 𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)~𝑁(𝛍𝑡

𝑠, 𝜎𝑡
2𝐌𝑡

𝑠) and (𝜎𝑡
2|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)~𝐼𝐺 (

𝑑𝑡
𝑠

2
,
𝐻𝑡
𝑠

2
).  

(2) (𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) follows a non-standardized student’s 𝑡 distribution with degrees of 

freedom 𝑑𝑡
𝑠 , mean 𝐱𝑡𝛍𝑡

𝑠  and variance 
𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 , which is denoted by 

(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)~𝑡 (𝐱𝑡𝛍𝑡
𝑠,
𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 , 𝑑𝑡

𝑠). 

where 𝐌𝑡
𝑠 , 𝛍𝑡

𝑠, 𝐻𝑡
𝑠  and 𝑑𝑡

𝑠  are defined in Eq. (3-8). Additionally, 𝑃(𝑠, 𝑡)  can be 
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calculated as:  

 
𝑃(𝑠, 𝑡) = 𝜋−(𝑡−𝑠+1)/2 (

|𝐌𝑡
𝑠|

|𝚺0|
)

1
2 𝛾

𝑣
2

(𝐻𝑡
𝑠)(𝑡−𝑠+1+𝑣)/2

Γ (
𝑡 − 𝑠 + 1 + 𝑣

2 )

Γ(𝑣/2)
 

 

(3-9) 

where Γ(𝑧)  is the gamma function defined as Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0
. The 

derivations of 𝑃(𝑠, 𝑡) can be found in APPENDIX G.  

Based on Lemma 3-2, the posterior distribution of the process mean in the 

EBPLUV is a mixture of 𝑡  non-standardized student’s 𝑡  distributions, which can be 

expressed as:  

 𝑝(𝜃𝑡|𝐲1:𝑡) =∑𝑤𝑡
𝑠𝑡 (𝐱𝑡𝛍𝑡

𝑠,
𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 , 𝑑𝑡

𝑠)

𝑡

𝑠=1

 

 

(3-10) 

Following the same decision rule, in the EBPLUV we have: 

 
𝑃𝑡 = 1 − Pr(𝜃𝑡 ≤ 𝑀|𝐲1:𝑡) = 1 −∑𝑤𝑡

𝑠𝐹ST,𝑑𝑡𝑠

(

 
 
 

𝑀 − 𝐱𝑡𝛍𝑡
𝑠

√
𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇

)

 
 
 𝑡

𝑠=1

 

 

(3-11) 

where 𝐹ST,𝑑𝑡𝑠(∙) is the CDF of the standard student’s 𝑡 distribution with degrees of 

freedom 𝑑𝑡
𝑠. 

In summary, our proposed EBPLUV method based on model (3-3) for detecting 

on-line whether the process mean has exceeded a critical threshold is given in the 

following Algorithm 3-2 as follows. 
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Algorithm 3-2. The EBPLUV for Detecting On-Line Whether 𝜃𝑡 has Crossed a 

Critical Threshold 

1. At 𝑡 = 1, initializing 𝑃1 = 0 and 𝑃(𝜏1 = 1|𝑦1) = 1. 

2. For 𝑡 = 2,⋯ ,𝑁 

• For 𝑠 = 1,⋯ , 𝑡  

                         Calculate the un-normalized 𝑤𝑡
𝑠 based on Eq. (3-5) and Eq. (3-9). 

                  End 

• Normalize 𝑤𝑡
𝑠 (𝑠 = 1,⋯ , 𝑡) such that ∑ 𝑤𝑡

𝑠𝑡
𝑠=1 = 1. 

• Calculate the detection index 𝑃𝑡  based on Eq. (3-11); if 𝑃𝑡 ≥ 𝛼, the process 

mean is considered exceeding the critical threshold and the algorithm is 

terminated. 

      End 

3.2.4 On-Line Inference for Constant Noise Variance 

In the previous subsection, the EBPLUV method is introduced for handling linear 

trends in the process where the noise variance is allowed to be changed to a very different 

value after an occasional jump. However, when the noise variance is actually constant 

over time (its value is still unknown), we will see that the EBPLUV method may not 

perform as well as expected for signals with multiple linear segments. As illustrated in 

Figure 3-1, we generate a simple piecewise linear signal with slope changing at time 200 

and noises having a constant standard deviation 𝜎𝑡 = 𝜎 = 0.01. Result of the estimated 
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mean tracking of the EBPLUV method (black dashed line in the left plot) shows its slow 

response to the change of slope and a poor estimation of the mean for the time period 

immediately after the slope changes.  

This is indeed a consequence of using a non-informative prior for the noise 

variance at the beginning of each new segment in the EBPLUV method. For the example 

in Figure 3-1, at a time 𝑡 right after 200 (say, 𝑡 ∈ (200, 250)), 𝑃(𝜏𝑡 = 200|𝐲1:𝑡) is much 

smaller than 𝑃(𝜏𝑡 = 1|𝐲1:𝑡)  because of the non-informative prior for noise variance 

assumed right after the occasional jump at 𝑡 = 200. Using a non-informative prior for 

𝜏𝑡 = 200 fails to utilize the information on 𝜎2 accumulated during 𝑡 < 200. Therefore if 

the noise variance is known to be unchanged over time, we propose to revise the 

EBPLUV method based on the following idea: in order to fully utilize the information on 

noise variance accumulated in the previous segments, at each time the prior of noise 

variance for a new segment is obtained based on the posterior information from the 

previous segments. For a new segment 𝐲𝑠:𝑡, its prior of noise variance 𝜎𝑠
2 can be obtained 

based on the posterior density 𝑝(𝜎𝑠−1
2 |𝐲1:𝑠−1). Then, based on Eq. (3-5) and Eq. (3-9), to 

have a closed form solution for 𝑃(𝑠, 𝑡) , which is needed for updating 𝑤𝑡
𝑠 =

𝑃(𝜏𝑡 = 𝑠|𝐲1:𝑡), the prior distribution of 𝜎𝑠
2 for a new segment needs to follow an inverse 

Gamma distribution. However, if 𝑝(𝜎𝑠−1
2 |𝐲1:𝑠−1)  is used as the prior distribution, it 

generally does not follow an inverse Gamma distribution because 𝑝(𝜎𝑠−1
2 |𝐲1:𝑠−1) depends 

on the previous change points. Therefore, in this chapter we propose a simple and 

effective approximation strategy. Denote 𝑣𝑠 and 𝛾𝑠 as prior parameters of noise variance 

at time 𝑠, then in our proposed strategy the prior of noise variance 𝜎𝑠
2 is approximated 

with the inverse Gamma distribution given by: 
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𝑝(𝜎𝑠−1
2 |𝐲1:𝑠−1) ≈ 𝐼𝐺 (

𝑑𝑠−1(𝑣𝑠∗)
𝑠∗

2
,
𝐻𝑠−1(𝛾𝑠∗)
𝑠∗

2
) , 𝑠∗ = argmax

𝑠0∈{1,2,…,𝑠−1}
𝑤
𝑠−1(𝑣𝑠0 ,𝛾𝑠0)

𝑠0 , (3-12) 

where 𝑑𝑠−1(𝑣𝑠∗)
𝑠∗ , 𝐻𝑠−1(𝛾𝑠∗)

𝑠∗ , 𝑠∗ ∈ {1, 2, … , 𝑠 − 1} can be obtained by substituting 𝑣 

and 𝛾 in the last two equations of Eq. (3-8) with 𝑣𝑠∗ and 𝛾𝑠∗: 

 

𝑑𝑠−1(𝑣𝑠∗)
𝑠∗ = (𝑠 − 1) − 𝑠∗ + 𝑣𝑠∗ + 1 

𝐻𝑠−1(𝛾𝑠∗)
𝑠∗ = 𝐲𝑠∗:(𝑠−1)𝐲𝑠∗:(𝑠−1)

𝑇 + 𝛾𝑠∗ + 𝛍0
𝑇𝚺0

−1𝛍0 − (𝐍𝑠−1
𝑠∗ )

𝑇
𝐌𝑠−1
𝑠∗ 𝐍𝑠−1

𝑠∗  

(3-13) 

And 𝑤
𝑠−1(𝑣𝑠0 ,𝛾𝑠0)

𝑠0 , 𝑠0 ∈ {1, 2, … , 𝑠 − 1} in Eq. (3-12) can be obtained based on Eq. (3-5): 

𝑤
𝑠−1(𝑣𝑠0 ,𝛾𝑠0)

𝑠0 ∝ {

𝑃(𝑣𝑠0 ,𝛾𝑠0)
(𝑠0, 𝑠 − 1)

𝑃(𝑣𝑠0 ,𝛾𝑠0)
(𝑠0, 𝑠 − 2)

∙ (1 − 𝑝) ∙ 𝑤
𝑠−2(𝑣𝑠0 ,𝛾𝑠0)

𝑠0     if  𝑠0 < 𝑠 − 1 

𝑃(𝑣𝑠−1,𝛾𝑠−1)(𝑠 − 1, 𝑠 − 1) ∙ 𝑝                               if  𝑠0 = 𝑠 − 1

 

 

(3-14) 

where 𝑃(𝑣𝑠,𝛾𝑠)(𝑠, 𝑡) = 𝜋
−(𝑡−𝑠+1)/2 (

|𝐌𝑡
𝑠|

|𝚺0|
)

1

2 𝛾𝑠
𝑣𝑠
2

(𝐻𝑡(𝛾𝑠)
𝑠 )

(𝑡−𝑠+1+𝑣𝑠)/2

Γ(
𝑡−𝑠+1+𝑣𝑠

2
)

Γ(𝑣𝑠/2)
, which is 

obtained from Eq. (3-9) by substituting 𝑣, 𝛾, and 𝐻𝑡
𝑠 with 𝑣𝑠, 𝛾𝑠, and 𝐻𝑡(𝛾𝑠)

𝑠 , respectively. 

The idea of Eq. (3-12) is to approximate 𝑝(𝜎𝑠−1
2 |𝐲1:𝑠−1)  with the posterior 

distribution of 𝜎𝑠−1
2  based on the data that are most likely from the last segment at time 

𝑠 − 1 (represented by 𝐲𝑠∗:𝑠−1). By implementing this approximation, on the one hand, we 

can utilize the information on noise variance accumulated from previous segments; on the 

other hand, the resulting prior of noise variance 𝜎𝑠
2 at each time 𝑠 still follows an inverse 

Gamma distribution, which allows us to recursively update the prior of noise variance 

across different time points. That is, at time 𝑠 = 1, we set the initial prior of noise 

variance as 𝑣1 = 𝑣  and 𝛾1 = 𝛾 . Then, for 𝑠 ≥ 2 , based on Eq. (3-12), prior of  

𝜎𝑠
2~𝐼𝐺 (

𝑣𝑠

2
,
𝛾𝑠

2
), where 𝑣𝑠 = 𝑑𝑠−1(𝑣𝑠∗)

𝑠∗  and 𝛾𝑠 = 𝐻𝑠−1(𝛾𝑠∗)
𝑠∗ , 𝑠∗ ∈ {1, 2, … , 𝑠 − 1}.   
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Throughout the rest of this chapter, we refer to the revised EBPLUV method for 

the cases with constant and unknown variance as the EBPLUV-EV method. The 

EBPLUV-EV method is able to utilize the information on noise variance accumulated in 

the previous segments with similar computational cost as EBPLUV. Similar to the 

EBPLUV method, the posterior distribution of the process mean in the EBPLUV-EV 

method is still a mixture of 𝑡 non-standardized student’s 𝑡 distributions: 

 𝑝(𝜃𝑡|𝐲1:𝑡) =∑𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠 𝑡 (𝐱𝑡𝛍𝑡

𝑠,
𝐻𝑡(𝛾𝑠)
𝑠

𝑑𝑡(𝑣𝑠)
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 , 𝑑𝑡(𝑣𝑠)

𝑠 )

𝑡

𝑠=1

 

 

(3-15) 

The corresponding decision rule is similar to Eq. (3-11), by replacing 𝑑𝑡
𝑠 , 𝐻𝑡

𝑠, 𝑤𝑡
𝑠 

with 𝑑𝑡(𝑣𝑠)
𝑠 , 𝐻𝑡(𝛾𝑠)

𝑠 , 𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠 , respectively. 

 

Figure 3-1. Estimated mean tracking performance of EBPLUV and EBPLUV-EV 

methods. 

In summary, our proposed EBPLUV-EV method based on model (3-3) for 

detecting on-line whether the process mean has exceeded a critical threshold in signals 

with multiple linear trends and constant noise variance is given in Algorithm 3-3. As 

shown in Figure 3-1 (red dashed line in the right plot), the EBPLUV-EV method results 
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in a much faster response to the occasional jump at 𝑡 = 200 and much more accurate 

estimation of the mean than EBPLUV. 

Algorithm 3-3. The EBPLUV-EV for Detecting On-Line Whether 𝜃𝑡 has Crossed a 

Critical Threshold in Signals with Multiple Linear Trends and Constant Noise 

Variance 

1. At 𝑡 = 1, initializing 𝑃1 = 0 and 𝑤1
1 = 𝑃(𝜏1 = 1|𝑦1) = 1, set prior parameters 𝑣1 =

𝑣 and 𝛾1 = 𝛾. Obtain 𝑑1(𝑣1)
1  and 𝐻1(𝛾1)

1  based on Eq. (3-13), and let 𝑣2 = 𝑑1(𝑣1)
1 , 𝛾2 =

𝐻1(𝛾1)
1 . 

2. For 𝑡 = 2,⋯ ,𝑁 

• For 𝑠 = 1,⋯ , 𝑡 

                         Obtain 𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠  based on Eq. (3-14). 

                  End 

• Normalize 𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠  (𝑠 = 1,⋯ , 𝑡) such that ∑ 𝑤𝑡(𝑣𝑠,𝛾𝑠)

𝑠𝑡
𝑠=1 = 1. 

• Find 𝑠∗ = argmax
𝑠∈{1,2,…,𝑡}

𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠 , and set 𝑣𝑡+1 = 𝑑𝑡(𝑣𝑠∗)

𝑠∗ , 𝛾𝑡+1 = 𝐻𝑡(𝛾𝑠∗)
𝑠∗ .  

• Calculate the detection index 𝑃𝑡; if 𝑃𝑡 ≥ 𝛼, the process mean is considered 

exceeding the critical threshold and the algorithm is terminated. 

      End 

3.3 Approximated On-Line Inference of the Process Mean 

The EB-based methods (EBKF, EBPLUV and EBPLUV-EV) presented in the 

previous section calculate the posterior probabilities of all possible 𝜏𝑡  at each time 𝑡. 
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Although the algorithm is much more efficient than the TH method, its complexity still 

increases quadratically with 𝑡. Therefore, for large 𝑡, the computational and memory cost 

may still become prohibitive. The particle filtering algorithm with Optimal Resampling in 

Algorithm 2-3 can be applied to our EB-based methods to make the complexity linear 

over time. Concretely, suppose at time 𝑡, the location of the latest occasional jumps 𝜏𝑡 

has a set of 𝑛𝑡  values 𝜏𝑡
1, 𝜏𝑡

2, ⋯ , 𝜏𝑡
𝑛𝑡  that are treated as particles, and their associated 

normalized posterior probabilities are 𝑤𝑡
𝜏𝑡
1

, 𝑤𝑡
𝜏𝑡
2

, … , 𝑤𝑡
𝜏𝑡
𝑛𝑡

 are considered as weights, in the 

context of particle filtering algorithm. By applying the PF algorithm with OR to our EB-

based methods, at each time we would have at most 𝑛𝑑 particles (𝑛𝑡 = 𝑛𝑑 + 1).  

The following Algorithm 3-4 presents a general framework for implementing the 

PF algorithm with OR for our original EB-based methods (EBKF, EBPLUV and 

EBPLUV-EV). Throughout the rest of this chapter, we refer to these approximated EB-

based methods as AEBKF, AEBPLUV and AEBPLUV-EV, respectively. 

Algorithm 3-4. A General Framework of PF Algorithm with OR for Our EB-Based 

Methods 

1. At 𝑡 = 1, initializing 𝑛𝑡 = 1, 𝜏𝑡
𝑛𝑡 = 1, 𝑃1 = 0 and 𝑃(𝜏𝑡

𝑛𝑡 = 1|𝑦1) = 1. If using 

EBPLUV-EV method: obtain 𝑑1(𝑣1)
1  and 𝐻1(𝛾1)

1  based on Eq. (3-13), and let 𝑣2 =

𝑑1(𝑣1)
1 , 𝛾2 = 𝐻1(𝛾1)

1 . 

2. For 𝑡 = 2,⋯ ,𝑁 

• Set 𝑛𝑡 = 𝑛𝑡 + 1 and 𝜏𝑡
𝑛𝑡 = 𝑡. 

• For 𝑖 = 𝜏𝑡
1, 𝜏𝑡

2, … , 𝜏𝑡
𝑛𝑡  
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                  Calculate the un-normalized 𝑤𝑡
𝑖  when using EBKF or EBPLUV, or 

𝑤𝑡(𝑣𝑖,𝛾𝑖)
𝑖  using Eq. (3-14) when applying EBPLUV-EV. 

                 End 

• Normalize the weights such that their sum is 1. 

• If using EBPLUV-EV: find 𝑠∗ = argmax
𝑠∈{𝜏𝑡

1,𝜏𝑡
2,…,𝜏𝑡

𝑛𝑡}

𝑤𝑡(𝑣𝑠,𝛾𝑠)
𝑠 , and let 𝑣𝑡+1 = 𝑑𝑡(𝑣𝑠∗)

𝑠∗ , 

𝛾𝑡+1 = 𝐻𝑡(𝛾𝑠∗)
𝑠∗ .  

• If 𝑛𝑡 = 𝑛𝑑 + 1, apply the OR algorithm in Algorithm 2-3 to sample 𝑛𝑑 

particles of 𝜏𝑡 and set 𝑛𝑡 = 𝑛𝑑; otherwise skip to the next step. 

• Calculate the detection index 𝑃𝑡; if 𝑃𝑡 ≥ 𝛼, the process mean is considered 

exceeding the critical threshold and the algorithm is terminated. 

      End 

3.4 Simulation Study 

3.4.1 Data Generated from the Random Walk Plus Random Jump Model 

In this section, simulations are carried out to evaluate and compare the 

performance of our proposed methods and TH method (Tsiamyrtzis and Hawkins, 2005) 

using the data generated from model (3-1). The goal of this subsection is two-folds. 

Firstly, we would like to evaluate our proposed methods and TH method from the 

perspective of robustness in estimation performance, by using both correct and 

misspecified model parameters for inference. Since the TH method is exactly designed 

for the data generated from model (3-1), we expect that the TH method performs well 

when true model parameters are used for inference. However, when model parameters 
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used for inference are incorrect, performance of TH method may be adversely affected. 

Note that the data generated from Eq. (3-1) do not satisfy the independence assumption 

of model (3-2) where parameters before and after occasional jumps are independent. 

Using the data generated from model (3-1) can also test how our model performs when 

the independence assumption of the data is not satisfied.  The second goal of this 

subsection is to use simulations to demonstrate the computational advantages of our 

proposed methods over the TH method, which has been shown analytically in our 

previous discussions.  

In the rest of this chapter, we consistently use the same simulation parameter 

settings, which are described as below. The maximum distinctive number of 𝜏𝑡  after 

resampling for approximated EB-based methods is 𝑛𝑑 = 10. For EBPLUV, EBPLUV-

EV and their approximated versions, we use relatively non-informative priors for the 

parameters with 𝛍0 = [
0
0
] , 𝚺0 = 1×10

4𝐈, and 𝑣 = 𝛾 = 4. All simulations in this chapter 

are executed using MATLAB 2014b on a 3.40 GHz Intel processor. 

3.4.1.1 Estimation Accuracy 

We compare our EBKF method with the TH method. Both methods assume that 

the measurement noise variance 𝜎2 is known, which is fixed to be 1 in this study. The 

probability threshold of the detection index (𝑃𝑡 ) is set as 𝛼 = 0.7 . The TH method 

assumes the jump size 𝛿  is known; while the EBKF does not make this assumption and 

use a non-informative prior for 𝛿 with mean 𝜇𝐽 = 0 and variance 𝜎𝐽
2 = 100. The varying 

model parameters of the simulated data are as follows: 𝑝 = (0.1, 0.3), 𝜎𝑅𝑊
2  =

(0.05, 1, 5), and 𝛿 = 𝑚𝜎𝑅𝑊,𝑚 = (1, 3, 6) providing 18 different scenarios for the model 

parameters. The initial process mean 𝜃0  of the simulated data follows the normal 
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distribution with 𝜃0~𝑁(0, 𝜎𝑅𝑊
2 ) . For each of the parameter scenarios, 𝑆 =

 1000 simulations are conducted. Inference of the process mean is based on the correct 

parameter specifications. The critical threshold 𝑀 is defined as the 75th percentile of all 

simulated process mean values for each simulation. 

The performance evaluations of different methods are based on comparing time 

𝑛1 when the true process mean exceeds 𝑀 and time 𝑛2 when the estimated process mean 

exceeds 𝑀, with 5 different cases which are defined by Tsiamyrtzis and Hawkins (2005): 

(a). No signal (NS) cases: 𝑛1 = 𝑛2 = 0. 

(b). Correct alarm (CA) cases: 𝑛1 = 𝑛2 > 0. 

(c). Incorrect timing (IA) alarm cases: 𝑛1 > 0, 𝑛2 > 0, 𝑛1 ≠ 𝑛2. 

(d). False alarm (FA) cases: 𝑛1 = 0, 𝑛2 > 0. 

(e). Missed alarm (MA) cases: 𝑛1 > 0, 𝑛2 = 0. 

Table 3-1 gives the corresponding results using data length 𝑁 = 10. Comparison 

of the values of 𝑛1 and 𝑛2 is done by recording the percentage of times that the above 

five cases are taking place out of 1000 simulations. As can be seen, performance of the 

EBKF method is only slightly worse than the TH method in terms of the overall detection 

accuracy (percentage of 𝑛1 = 𝑛2). The reason that EBKF is slightly worse than TH is that 

the EBKF method does not use any knowledge on the jump size 𝛿, while the TH method 

uses all exact information of the data including 𝛿.  

Although the TH method performs quite well when using the correct parameters 

for inference, in practical situations, the exact knowledge of model parameters is rarely 

known. Therefore, using the correct parameter specifications cannot provide us the whole 

picture of the estimation performance of different methods. A more critical component in 
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the performance evaluation is the ability to achieve good detection accuracy with less 

sensitivity to the parameter misspecifications. In the following, we will carry out another 

simulation study to compare EBKF and TH methods using both correct and incorrect 

parameter specifications. 

The parameter settings are exactly the same as the previous simulation study. 

However, in order to compare methods under both correct and incorrect parameter 

specifications, this time we define two types of parameter settings: 

(a). True model parameter (TMP) setting: it is the true parameter setting used to generate 

all simulated signals.  

(b). Inference model parameter (IMP) setting: it is the parameter setting used by a 

particular inference method. In our study, the TH method uses all 18 possible parameter 

settings to draw inference on the process mean, while the EBKF method uses only 6 

parameter settings since its inference is based on only 𝑝 and 𝜎𝑅𝑊
2  and does not assume 

known jump size 𝛿. 

The following Table 3-2 shows the simulation results of EBKF and TH methods 

with different IMP settings, using the TMP setting 𝑝 = 0.1, 𝜎𝑅𝑊
2 = 0.05,𝑚 = 1. It can be 

seen that the TH method is more sensitive to the parameter misspecifications. When the 

IMP settings are more deviated from the TMP setting, detection performance of the TH 

method is more adversely affected. In contrast, EBKF is less sensitive to the parameter 

misspecifications and therefore it outperforms the TH method in terms of the overall 

detection accuracy. Moreover, from Table 3-2, for some parameter setting (e.g., 𝑝 =

0.3, 𝜎𝑅𝑊
2 = 0.05,𝑚 = 6), the correct detection rate of TH can be as much as 37.5% lower 

than that of EBKF, while for all settings TH is no more than 9% lower than EBKF. 
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Table 3-1. Simulation results of TH and EBKF using the correct parameter specifications 

with 𝑆 = 1000, 𝑁 = 10 

Model parameters 
Methods 

𝑛1 = 𝑛2 𝑛1 ≠ 𝑛2 

𝑝 𝜎𝑅𝑊
2  𝑚 NS CA IA FA MA 

0.1 0.05 1 
TH 0.552 0.01 0.195 0.013 0.23 

EBKF 0.547 0.018 0.185 0.018 0.232 

0.1 0.05 3 
TH 0.544 0.021 0.233 0.014 0.188 

EBKF 0.548 0.008 0.184 0.01 0.25 

0.1 0.05 6 
TH 0.533 0.055 0.269 0.018 0.125 

EBKF 0.538 0.029 0.227 0.013 0.193 

0.1 1 1 
TH 0.54 0.113 0.249 0.014 0.084 

EBKF 0.543 0.104 0.251 0.011 0.091 

0.1 1 3 
TH 0.528 0.197 0.194 0.02 0.061 

EBKF 0.537 0.168 0.217 0.011 0.067 

0.1 1 6 
TH 0.566 0.256 0.133 0.01 0.035 

EBKF 0.568 0.236 0.152 0.008 0.036 

0.1 5 1 
TH 0.544 0.252 0.156 0.006 0.042 

EBKF 0.543 0.251 0.155 0.007 0.044 

0.1 5 3 
TH 0.517 0.336 0.115 0.002 0.03 

EBKF 0.516 0.323 0.121 0.003 0.037 

0.1 5 6 
TH 0.554 0.347 0.079 0.007 0.013 

EBKF 0.555 0.331 0.095 0.006 0.013 

0.3 0.05 1 
TH 0.497 0.026 0.248 0.015 0.214 

EBKF 0.48 0.037 0.224 0.032 0.227 

0.3 0.05 3 
TH 0.439 0.056 0.334 0.022 0.149 

EBKF 0.433 0.06 0.286 0.028 0.193 

0.3 0.05 6 
TH 0.432 0.139 0.316 0.024 0.089 

EBKF 0.44 0.118 0.277 0.016 0.149 

0.3 1 1 
TH 0.532 0.164 0.234 0.009 0.061 

EBKF 0.53 0.157 0.24 0.011 0.062 

0.3 1 3 
TH 0.441 0.29 0.201 0.012 0.056 

EBKF 0.443 0.255 0.217 0.01 0.075 

0.3 1 6 
TH 0.44 0.444 0.083 0.006 0.027 

EBKF 0.442 0.4 0.118 0.004 0.036 

0.3 5 1 
TH 0.499 0.307 0.146 0.004 0.044 

EBKF 0.5 0.302 0.15 0.003 0.045 

0.3 5 3 
TH 0.463 0.4 0.102 0.01 0.025 

EBKF 0.464 0.374 0.116 0.009 0.037 

0.3 5 6 
TH 0.447 0.495 0.044 0.003 0.011 

EBKF 0.448 0.468 0.063 0.002 0.019 

Overall 

TH 0.504 0.217 0.185 0.012 0.082 

EBKF 0.504 0.202 0.182 0.012 0.1 

TH 0.721 0.279 

EBKF 0.706 0.294 
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Table 3-2. Simulation results of TH and EBKF using different IMP settings and the TMP 

setting of 𝑝 = 0.1, 𝜎𝑅𝑊
2 = 0.05,𝑚 = 1 

Inference parameters 
Methods 

𝑛1 = 𝑛2 𝑛1 ≠ 𝑛2 

𝑝 𝜎𝑊
22 𝑚 NS CA IA FA MA 

0.1 0.05 1 
TH 0.52 0.003 0.188 0.022 0.267 

EBKF 0.522 0.005 0.173 0.02 0.28 

0.1 0.05 3 
TH 0.491 0.024 0.25 0.051 0.184 

EBKF 0.522 0.005 0.173 0.02 0.28 

0.1 0.05 6 
TH 0.459 0.041 0.263 0.083 0.154 

EBKF 0.522 0.005 0.173 0.02 0.28 

0.1 1 1 
TH 0.322 0.076 0.327 0.228 0.047 

EBKF 0.351 0.073 0.312 0.199 0.065 

0.1 1 3 
TH 0.31 0.079 0.329 0.24 0.042 

EBKF 0.351 0.073 0.312 0.199 0.065 

0.1 1 6 
TH 0.345 0.073 0.315 0.205 0.062 

EBKF 0.351 0.073 0.312 0.199 0.065 

0.1 5 1 
TH 0.238 0.073 0.34 0.313 0.036 

EBKF 0.257 0.076 0.33 0.294 0.043 

0.1 5 3 
TH 0.247 0.071 0.337 0.304 0.041 

EBKF 0.257 0.076 0.33 0.294 0.043 

0.1 5 6 
TH 0.259 0.073 0.333 0.292 0.043 

EBKF 0.257 0.076 0.33 0.294 0.043 

0.3 0.05 1 
TH 0.519 0.032 0.262 0.038 0.149 

EBKF 0.515 0.031 0.205 0.042 0.207 

0.3 0.05 3 
TH 0.389 0.062 0.327 0.168 0.054 

EBKF 0.515 0.031 0.205 0.042 0.207 

0.3 0.05 6 
TH 0.325 0.072 0.339 0.232 0.032 

EBKF 0.515 0.031 0.205 0.042 0.207 

0.3 1 1 
TH 0.293 0.076 0.33 0.258 0.043 

EBKF 0.359 0.071 0.308 0.192 0.07 

0.3 1 3 
TH 0.246 0.08 0.337 0.305 0.032 

EBKF 0.359 0.071 0.308 0.192 0.07 

0.3 1 6 
TH 0.347 0.064 0.314 0.204 0.071 

EBKF 0.359 0.071 0.308 0.192 0.07 

0.3 5 1 
TH 0.207 0.086 0.339 0.352 0.016 

EBKF 0.236 0.086 0.331 0.323 0.024 

0.3 5 3 
TH 0.218 0.081 0.34 0.341 0.02 

EBKF 0.236 0.086 0.331 0.323 0.024 

0.3 5 6 
TH 0.243 0.082 0.336 0.316 0.023 

EBKF 0.236 0.086 0.331 0.323 0.024 

Overall 

TH 0.332 0.064 0.311 0.220 0.073 

EBKF 0.373 0.057 0.277 0.178 0.115 

TH 0.396 0.604 

EBKF 0.430 0.570 
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3.4.1.2 Computational Efficiency 

In the previous subsection, through simulations we have shown that one 

advantage of the EB-based methods over TH method lies in requiring less knowledge of 

process parameters to achieve good estimation accuracy of the process mean. In the 

following, we will demonstrate the advantage of our proposed methods from the 

computational perspective. 

The following Figure 3-2 displays the computational costs of different methods 

on running 100 simulations (𝑆 = 100) of different data length 𝑁. Each data sample is 

generated from parameters 𝜎2 = 1, 𝑝 = 0.1, 𝜎𝑅𝑊
2 = 0.05, 𝛿 = 𝜎𝑅𝑊.  

 

Figure 3-2. Computational costs of different methods of 100 simulations with varying 

data size 𝑁. Each signal is generated using 𝜎2 = 1, 𝑝 = 0.1, 𝜎𝑅𝑊
2 = 0.05, 𝛿 = 𝜎𝑅𝑊. 

Results of Figure 3-2 are consistent with our previous discussions on the 

computational complexity. The TH method is the least efficient with exponentially 

increasing computational time. Both EB-based methods (EBPLUV and EBKF) exhibit 

quadratically increasing cost over time, with EBKF being superior because of using more 
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prior knowledge (variance of the random walk) and having smaller number of unknown 

parameters. The most efficient methods refer to the approximated EB-based methods 

(AEBPLUV and AEBKF) whose computational costs are linear over time. Here we do 

not show the corresponding results of EBPLUV-EV and AEBPLUV-EV since they have 

the same computation costs as EBPLUV and AEBPLUV, respectively.  

3.4.2 Piecewise Linear Data 

It is found in the literature that some degradation data can be modeled with a 

piecewise linear model (Chen and Tsui, 2013). In this subsection, we further evaluate and 

compare the performance of our methods and TH method using piecewise linear data, 

which are generated based on the following model: 

𝜃𝑡~ {
𝑘1𝑡,                          0 ≤ 𝑡 ≤ 5               

𝑘2(𝑡 − 5) + 𝜃5,      𝑡 > 5                      
 , 𝑘2 = ∆ ∙ 𝑘1 (∆ > 1) 

𝑦𝑡 = 𝜃𝑡 + 휀𝑡, 휀𝑡~𝑁(0, 𝜎
2). 

The process mean of the simulated data consists of two linear segments with 

different slopes 𝑘1 and 𝑘2, and 𝑘2 > 𝑘1. Since both EBPLUV and EBPLUV-EV methods 

are based on our piecewise linear model in Eq. (3-3), we will use them to compare with 

the TH method. The detection performance of different methods are still evaluated based 

on how ‘close’ the estimated failure time 𝑛2 is to the true failure time 𝑛1. We are going to 

use the following metrics for performance evaluation: 

FAR = 
∑ 𝐼{𝑛1𝑖−𝑛2𝑖>0}
𝑠
𝑖=1

𝑆
, MAR = 

∑ 𝐼{(𝑛1𝑖>0)∩(𝑛2𝑖=0)}
𝑠
𝑖=1

𝑆
, and 

DD-RMSE = √
∑ (𝑛2𝑖−𝑛1𝑖)

2
{𝑖:𝑛2𝑖≥𝑛1𝑖>0,1≤𝑖≤𝑆}

𝑆
 

where 𝑛1𝑖 and 𝑛2𝑖 are true failure time and estimated failure time of the 𝑖-th data 

sample, respectively, 𝑛2𝑖 = 0 if no failure is detected by the end of the data sample, and 
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𝐼{𝐴} is the indicator function with value 1 if 𝐴 is true and 0 otherwise. FAR is the false 

alarm rate which measures the percentage of early detection while MAR is the missed 

alarm rate which is the rate that the algorithm does not give an alarm when the true 

failure occurs. The root mean squared error (RMSE) for delayed detections (DD-RMSE), 

which is defined on the closeness of 𝑛1 and 𝑛2 when 𝑛2 ≥ 𝑛1, measures the detection 

delay when the failure is detected. They are all very common metrics for evaluating the 

performance of a statistical process control procedure.  

In our simulations, 𝜎2 is set to be 1 and 10 and constant over time, 𝑘1 = 0.5, and 

∆ = (4, 5, 6), which provides six different parameter scenarios. For each of the parameter 

scenario, 𝑆 = 1000  samples with data length 𝑁 = 15  are simulated. The critical 

threshold 𝑀 is defined as 𝑀 = (𝜃𝑡=10 + 𝜃𝑡=11)/2, thus the true failure occurs at time 11 

(𝑛1𝑖 = 11, 𝑖 = 1, 2, … , 𝑆). For the inference parameters in TH method, we use 𝜎𝑅𝑊
2 =

𝑞𝜎, 𝑞 = (0, 1), 𝛿 = 𝑚𝜎,𝑚 = (0.05, 1, 5) and only show the results for TH method using 

the parameter values leading to the best performance. Both our methods and TH method 

use 𝑝 = 0.1.  

Table 3-3 shows the corresponding results. Results using approximated versions 

of EBPLUV and EBPLUV-EV, namely AEBPLUV and AEBPLUV-EV, are also 

included. It can be seen that the TH method fails to detect the failure for each of the data 

sample (MAR=1). Comparing EBPLUV and EBPLUV-EV, EBPLUV-EV has 

significantly better detection performance when the process variance is small (𝜎2 = 1), 

which is consistent with our observations in Section 3.2.4. When variance is large, the 

two methods have very similar performance. Note that compared to EBPLUV and 

EBPLUV-EV, their approximated versions yield very similar results with much less 
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computational load. Therefore in the rest of this chapter, we will use AEBPLUV and 

AEBPLUV-EV instead of their exact versions. 

Table 3-3. Simulation results of different methods using data with two piecewise linear 

segments 

True 

parameters 

Inference 

parameters Methods FAR MAR 
DD-

RMSE 
𝜎2 ∆ 𝑚 𝑞 

1 4 0.05 0 

TH 0 1 N/A 

EBPLUV 0 0 0.94 

AEBPLUV 0.01 0 0.92 

EBPLUV-EV 0.02 0 0.75 

AEBPLUV-EV 0.01 0 0.74 

1 5 0.05 0 

TH 0 1 N/A 

EBPLUV 0.01 0 0.87 

AEBPLUV 0.01 0 0.88 

EBPLUV-EV 0.02 0 0.57 

AEBPLUV-EV 0.02 0 0.58 

1 6 0.05 0 

TH 0 1 N/A 

EBPLUV 0 0 0.71 

AEBPLUV 0 0 0.70 

EBPLUV-EV 0.01 0 0.43 

AEBPLUV-EV 0.01 0 0.41 

10 4 0.05 0 

TH 0 1 N/A 

EBPLUV 0.13 0 1.30 

AEBPLUV 0.14 0 1.31 

EBPLUV-EV 0.14 0 1.28 

AEBPLUV-EV 0.14 0 1.29 

10 5 0.05 0 

TH 0 1 N/A 

EBPLUV 0.11 0 1.15 

AEBPLUV 0.12 0 1.15 

EBPLUV-EV 0.12 0 1.15 

AEBPLUV-EV 0.11 0 1.14 

10 6 0.05 0 

TH 0 1 N/A 

EBPLUV 0.09 0 1.03 

AEBPLUV 0.09 0 1.02 

EBPLUV-EV 0.09 0 1.02 

AEBPLUV-EV 0.08 0 1.02 

3.4.3 Degradation Data for Fatigue Crack Propagation 

In this subsection, we apply our proposed methods to a real type of degradation 

data called the fatigue crack propagation. Fatigue failure has been commonly seen in 
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practice, including some famous examples such as the collapse of the Silver Bridge (Lee, 

1996), the fractures of the Liberty ships (Macdonald, 2011), etc. The fatigue failure is 

usually caused by the crack propagation, whose path can be considered as a degradation 

path. The crack propagation is subject to repeatedly fatigue loading, which is either 

cyclic with a constant amplitude or non-cyclic with amplitudes exceeding a threshold. 

The latter one is also called overloads. Si et al. (2016) studied the problem of overload 

retardation, which occurs in some materials where overloads decelerate rather than 

accelerate the crack propagation process. The analysis of the overload retardation effect 

is considered critical since ignoring such effect can lead to a biased estimation of product 

life.  

 

Figure 3-3. Illustrations of the crack length-cumulative loading cycles curve with and 

without noise. 

Figure 3-3 shows a crack propagation path with an overload retardation effect, 

which is based on the experiment conducted in Si et al. (2016). In the experiment, the 

Compact Tension (CT) fatigue loads (Sih, 1973) mixed with a single load are added at 
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cycle 𝑁0 on some testing specimens to obtain their crack propagation paths. Given the 

observed crack propagation paths, Si et al. (2016) proposed a physical-statistical model 

that is based on a modified Paris law model and a maximum likelihood estimation (MLE) 

approach to obtain the fitted crack propagation paths with no random errors, which will 

be further used to determine whether the testing material has an overload retardation 

effect. The crack propagation path in Figure 3-3(a) is one of the fitted crack propagation 

paths with no random noise that is obtained in Si et al. (2016). 

We test our AEBPLUV and AEBPLUV-EV methods on this fitted crack 

propagation curve by adding simulated noises with three different variance levels: 𝜎2 =

(1, 3, 6). The failure threshold is 𝑀 = 18 as defined in Si et al. (2016). As an illustration, 

Figure 3-3(b) shows the estimated mean trend using our AEBPLUV-EV method for the 

crack length curve in Figure 3-3(a) with noise variance 𝜎2 = 1. It can be seen that the 

estimated mean in Figure 3-3(b) using AEBPLUV-EV captures the main trends in the 

true mean curve in Figure 3-3(a), including the overload retardation phase starting at 𝑁0. 

TH method is not included for comparison because of its exponentially increasing 

computational cost over time, which is obviously prohibitive for this data with 600 time 

points. The performance of the methods are again evaluated based on the metrics defined 

previously, namely FAR and DD-RMSE (MAR is not needed here since both methods 

have zero missed alarms). As can be seen in Table 3-4, both methods have the same 

performance on FAR. AEBPLUV-EV slightly outperforms AEBPLUV in terms of 

smaller detection delays.  
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Table 3-4. Simulation results of different methods using the fitted crack propagation path 

with different noise levels 

𝜎2 Methods FAR DD-RMSE 

1 
AEBPLUV 0.02 25.31 

AEBPLUV-EV 0.02 23.76 

3 
AEBPLUV 0 34.62 

AEBPLUV-EV 0 34.20 

6 
AEBPLUV 0.02 35.43 

AEBPLUV-EV  0.02 34.88 

3.5 Summary 

In this chapter we study the problem of detecting on-line whether the mean of a 

short-run process subject to random jumps and possibly random walks has exceeded a 

pre-specified threshold. We modify the model proposed by Tsiamyrtzis and Hawkins 

(2005) by assuming the process mean before and after occasional jumps are independent, 

which forms the basis of using the exact Bayesian method and its approximated version 

to carry out the posterior inference of the process mean. Our proposed model is also more 

flexible in that it can be extended for handling linear trends, which is also commonly seen 

in various short-run and degradation processes.  

The contributions of our proposed method are three-folds. First and most 

important is its high computational efficiency. By utilizing the exact Bayesian method, 

the computational cost of updating the posterior distribution of the process mean is 

reduced to be quadratic over time, compared with exponential cost of the TH method. 

And using the approximated exact Bayesian with optimal resampling, we can further 

reduce the computational complexity to be linear over time, with little loss in estimation 

accuracy. Secondly, compared with the TH method, the proposed method is shown to 

require less knowledge on the process parameters such as the jump size and the 
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measurement variance. So it is much more robust to parameter misspecifications. Thirdly, 

for processes with a constant (but unknown) variance, we propose a new approximate 

method to utilize the variance information accumulated in previous segments while not 

increasing the computational costs. 

The performance of our method is evaluated through both simulated signals and 

real data examples. Results demonstrate the robustness of our proposed methods in 

estimation performance when using different parameter specifications (both correct and 

incorrect) for inference, and significantly higher computational efficiency compared to 

the existing methods.  
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CHAPTER 4. WEIGHTED BAND DEPTH APPROACHES FOR FUNCTIONAL 

DATA ANALYSIS 

Recently, functional data analysis has been a popular research topic in many 

areas. Among different techniques, the use of the concept of depth has shown its great 

usefulness in robust analysis of functional data, such as producing robust location 

estimators of sample curves, or detecting various outliers. In this chapter, we focus on 

using depth for detecting outliers, which are considered as coming from a different 

process compared to normal curves. We propose two new depth notions, the weighted 

band depth (WBD) and the localized weighted band depth (LWBD), for detecting various 

outliers based on the band depth proposed by López-Pintado and Romo (2009). A novel 

idea called the shape distance is introduced to make proposed depth approaches much 

more effective than the band depth method in detecting outliers that have different shapes 

with normal curves. Additionally, the proposed LWBD is also robust in detecting outliers 

with exceptionally large magnitude. Numerical studies based on simulated signals and 

application to a real data example are used to evaluate the performance of proposed depth 

methods and other existing depth notions. Our proposed depth approaches are shown to 

be much more effective and robust in detecting a variety of outliers. 

The remainder of this chapter is organized as follows. In Section 4.1, we give a 

brief review on the original band depth. The proposed WBD and LWBD are presented in 

Section 4.2. Simulation study and application to a real example are contained in Sections 

4.3 and 4.4, respectively. This chapter is concluded in Section 4.5. 
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4.1 Review of the Band Depth for Functional Data 

In this section, we give a brief review on the BD, a depth approach recently 

proposed by López-Pintado and Romo (2009) that is shown to be more effective than 

existing functional depths in detecting shape outliers.  

Let 𝑓(𝑡) be a stochastic function, 𝑡 ∈ 𝒯 , belonging to the space 𝐶(𝒯)  of real 

continuous functions on some compact interval 𝒯 ∈ ℝ . The band depth is defined 

through a graph-based approach. Suppose the graph of a function 𝑓 is the subset of the 

plane 𝐺(𝑓) = {(𝑡, 𝑓(𝑡)): 𝑡 ∈ 𝒯} , and 𝑓1(𝑡), 𝑓2(𝑡), . . . , 𝑓𝑛(𝑡)  are a collection of 

corresponding real functions. The band in ℝ2  delimited by 𝑗 (2 ≤ 𝑗 ≤ 𝑛)  curves 

𝑓𝑖1 , 𝑓𝑖2 , … , 𝑓𝑖𝑗  is 𝐵 (𝑓𝑖1 , 𝑓𝑖2 , … , 𝑓𝑖𝑗) = {(𝑡, 𝑓(𝑡)): 𝑡 ∈ 𝒯, min𝑟=1,…,𝑗
𝑓𝑖𝑟(𝑡) ≤ 𝑓(𝑡) ≤

max
𝑟=1,…,𝑗

𝑓𝑖𝑟(𝑡)}. The following Figure 4-1 displays the band given by three solid curves; the 

dotted curve is included in this band, while the dashed curve is not completely inside the 

band. For any function 𝑓 in 𝑓1, … , 𝑓𝑛, its BD is defined as: 

 

𝐵𝐷𝑛,𝐽(𝑓) =  ∑𝐵𝐷𝑛
(𝑗)(𝑓)

𝐽

𝑗=2

 

 

(4-1) 

 
𝐵𝐷𝑛

(𝑗)(𝑓) =  (
𝑛
𝑗)
−1

∑ 𝐼 {𝐺(𝑓) ⊆ 𝐵 (𝑓𝑖1 , 𝑓𝑖2 , … , 𝑓𝑖𝑗)}

1≤𝑖1…<𝑖𝑗≤𝑛

, 2 ≤ 𝑗 ≤ 𝑛 

 

(4-2) 

where 𝐼{𝐴} is the indicator function with value 1 if 𝐴 is true and 0 otherwise. 

Therefore, the BD of the function 𝑓  can be expressed as the proportion that 𝑓  is 

completely contained in the bands 𝐵 (𝑓𝑖1 , 𝑓𝑖2 , … , 𝑓𝑖𝑗)  delimited by 𝑗  different curves 

𝑓𝑖1 , 𝑓𝑖2 , … , 𝑓𝑖𝑗. In López-Pintado and Romo (2009), 𝐽 = 3 is recommended for use. 
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Figure 4-1. Band delimited by three solid curves. 

The finite dimensional version of BD can be also constructed for the use of 

multivariate data. For any point 𝐟 in ℝ𝑑, it can be regarded as a real function defined on 

the set of indexes {1, 2, … , 𝑑} and expressed as 𝐟 =  (𝑓(1), 𝑓(2), … , 𝑓(𝑑)). Given the 

points 𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗  in ℝ𝑑 , the corresponding band in parallel coordinates 

𝐵 (𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗) = {(𝑘, 𝑧): 𝑘 ∈  {1, 2, … , 𝑑}, min
𝑟=1,…,𝑗

𝑓𝑖𝑟(𝑘) ≤ 𝑧 ≤ max
𝑟=1,…,𝑗

𝑓𝑖𝑟(𝑘)}  becomes 

in Cartesian coordinates a 𝑑-dimensional interval with sides parallel to the axes delimited 

by the minimum and maximum of the coordinates of 𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗, expressed as: 

 𝑄 (𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗) 

= {𝐟 ∈ ℝ𝑑 , min
𝑟=1,…,𝑗

𝑓𝑖𝑟(𝑘) ≤ 𝑓(𝑘) ≤ max
𝑟=1,…,𝑗

𝑓𝑖𝑟(𝑘) , 𝑘 = 1, 2, … , 𝑑} 

(4-3) 

The following Figure 4-2 displays the band delimited by three 2-dimensional 

points (1, 3), (4, 6) and (5, 4) in the plane in parallel and Cartesian coordinates, 

respectively; the point (2, 5) is inside the band, while the point (3, 7) is not included in 
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the band. Therefore, for any point 𝐟  in 𝐟1, … , 𝐟𝑛 , 𝐵𝐷𝑛
(𝑗)(𝐟)  is the proportion of sets 

𝑄 (𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗) defined by 𝑗 different points 𝐟𝑖1 , 𝐟𝑖2 , … , 𝐟𝑖𝑗 from the sample containing 𝐟. 

The band depth of 𝐟 can then be obtained through Eq. (4-1).  

 

Figure 4-2. (a) The band (solid lines) delimited by points (1, 3), (4, 6), (5, 4) in parallel 

coordinates and (b) the same three points and interval (the rectangle) in Cartesian 

coordinates. Point (2, 5) is inside the band, point (3, 7) is outside the band. 

By using the idea of band, the BD is able to capture useful shape information of 

each curve and as a result, it is more effective than existing functional depths in detecting 

shape outliers. However, as discussed previously, the major disadvantage of BD is that it 

is only sensitive for those shape outliers that are not fully contained in the band. For those 

shape outliers that are completely inside the band, BD is lack of strength in detecting 

them since it would treat these outliers exactly the same as those normal curves that are 

also fully inside the band. To overcome such drawback, in the following section we 

propose the weighted band depth (WBD) based on the idea of using shape distance. 
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4.2 The Weighted Band Depth (WBD) and Localized Weighted 

Band Depth (LWBD) 

In this section, we first propose WBD based on the idea of using shape distance, 

which leads to greater strength of tackling different shape outliers. To make it also robust 

in detecting location outliers, we further introduce the localized WBD (LWBD). The 

finite dimensional version of the WBD and LWBD are also explored.  

4.2.1 The Shape Distance in WBD and its Motivation 

Our idea of using the shape distance is motivated by the example in Figure 1-1, 

where we would like to detect those shape outliers that are completely inside a band. 

When curves are fully contained in a band, rather than being treated all equally, their 

depths would be varied by their shapes. Specifically, the shape distance of each target 

curve to its enclosed band is obtained by ‘squeezing’ the band until it has minimum width 

to fully contain the target curve. The resulted band width can be considered as the shape 

distance of the target curve to the band. Figure 4-3 shows three target curves (𝑓) with 

different shapes that are all fully inside a band delimited by two other curves 𝑓1, 𝑓2. As 

can be seen, as the shape of the target curve becomes more similar to the boundary curves 

of the band, the corresponding shape distance becomes smaller. Consequently, when the 

target curve is exactly the same as the boundary curves of the band, their shape distance 

becomes zero, as illustrated by the case (c). 

Mathematically, suppose the target functional curve, 𝑓, is fully contained in a 

band delimited by two other curves 𝑓1, 𝑓2 . Without loss of generality, assuming 𝑓2  is 

above 𝑓, then the shape distance (SD) of 𝑓 to the band is defined as: 
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 𝑆𝐷(𝑓, 𝐵(𝑓1, 𝑓2)) 

= 𝑑(𝑓1, 𝑓2) − (min
𝑡∈𝒯

(𝑓2(𝑡) − 𝑓(𝑡)) + min
𝑡∈𝒯

(𝑓(𝑡) − 𝑓1(𝑡)))  

(4-4) 

The terms inside the parenthesis of Eq. (4-4) correspond to the ‘squeezing’ 

distance of the band. 𝑑(𝑓1, 𝑓2) corresponds to the distance measurement between curves 

𝑓1 and 𝑓2. In this chapter, it is chosen to be the maximum norm (or infinity norm), which 

is 𝑑(𝑓1, 𝑓2) = ‖𝑓1 − 𝑓2‖∞ = max
𝑡∈𝒯

|𝑓1(𝑡) − 𝑓2(𝑡)|. Other distance measurements, like 𝐿1-

norm (absolute distance), 𝐿2-norm (Euclidean distance), can be also used following the 

same approach.  

 

Figure 4-3. Illustration of the shape distance of the target curve 𝑓  (solid line) to its 

enclosed band delimited by two dashed curves. 
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Our previous discussion focuses on the scenario where the target curve 𝑓 is not 

the curve delimiting the band (𝑓 ∉ {𝑓1, 𝑓2}). When the target curve is just one of the 

curves that delimits the band (𝑓 ∈ {𝑓1, 𝑓2}), the shape distance of 𝑓 to the band can be 

also obtained based on Eq. (4-4). Specifically, suppose the band is determined by two 

functional curves – the target curve 𝑓 and another curve 𝑓1. By considering 𝑓 overlaps 𝑓2 

and replacing 𝑓2  with 𝑓  in Eq. (4-4), in this case the shape distance of 𝑓  to the band 

becomes: 

𝑆𝐷(𝑓, 𝐵(𝑓, 𝑓1)) = max
𝑡∈𝒯

(𝑓(𝑡) − 𝑓1(𝑡)) − min
𝑡∈𝒯

(𝑓(𝑡) − 𝑓1(𝑡)) (4-5) 

Eq. (4-5) suggests that, if 𝑓 and 𝑓1 do not cross over, the shape distance of 𝑓 to 

the band simply becomes the difference between maximal and minimal distances of 𝑓 

and 𝑓1 , as illustrated in Figure 4-4(a). On the other hand, if 𝑓 and 𝑓1  cross with each 

other, the resulted shape distance is equivalent to the summation of two maximal 

distances, each corresponds to 𝑓 being above 𝑓1 and 𝑓 being below 𝑓1, which is illustrated 

in Figure 4-4(b). 

 

Figure 4-4. Illustration of the shape distance of the target curve 𝑓 to the band when it is 

one of the boundary curves of the band.  
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Based on the shape distance of the target curve 𝑓 to different bands, the depth of 

𝑓 can be obtained. The shape distance essentially quantifies the shape similarity between 

the target curve and remaining curves in the data. Since smaller shape distance represents 

higher similarity of the target curve with the data, a larger depth should be assigned. 

Mathematically, for any functional curve 𝑓  in 𝑓1, … , 𝑓𝑛 , the WBD of 𝑓  when 𝐽 = 2 is 

defined as: 

 
𝑊𝐵𝐷𝑛(𝑓) = (

𝑛
2
)
−1

∑ 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) 𝐼{𝐺(𝑓) ⊆ 𝐵(𝑓𝑖1 , 𝑓𝑖2)}

1≤𝑖1<𝑖2≤𝑛

 (4-6) 

where 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)))  is a non-increasing function of 𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)), 

which can be obtained following Eq. (4-4) (𝑓 ∉ {𝑓𝑖1 , 𝑓𝑖2}) or Eq. (4-5) (𝑓 ∈ {𝑓𝑖1 , 𝑓𝑖2}). 

Compared to the original band depth (Eq. (4-1) and Eq. (4-2)), the term 

𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)))  is added in WBD to take into consideration different 

contributions of curves with different shapes. The reason for using 𝐽 = 2 in WBD is that 

it involves reasonable computation and can already detect shape outliers very effectively, 

as will be shown in our simulation study.  

In this chapter, the non-increasing function 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) is chosen to 

be the truncated Gaussian kernel function, which is also used in HMD (Curvas et al., 

2006) and KFSD (Sguera et al., 2014): 

 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)))  

=
2

√2𝜋
exp(−

𝑆𝐷2 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))

2𝑐1
2 ) , 𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)) ≥ 0, 𝑐1 > 0 

(4-7) 
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where 𝑐1  is the tuning parameter controlling how fast 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) 

dilutes with the increase of the shape distance. Note that other types of non-increasing 

functions, such as the reciprocal function, can be also used for 𝑊(𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))). 

Similar to the original band depth, the finite dimensional version of WBD can be 

also constructed for multivariate data. For any point 𝐟 in 𝐟1, … , 𝐟𝑛, the WBD of  𝐟 can be 

calculated as: 

 
𝑊𝐵𝐷𝑛(𝐟) =  (

𝑛
2
)
−1

∑ 𝑊(𝑆𝐷 (𝐟, 𝑄(𝐟𝑖1 , 𝐟𝑖2))) 𝐼{𝐟 ⊆ 𝑄(𝐟𝑖1 , 𝐟𝑖2)}

1≤𝑖1<𝑖2≤𝑛

 (4-8) 

where 𝑄(𝐟𝑖1 , 𝐟𝑖2) is defined in Eq. (4-3) that represents the band delimited by 

points 𝐟𝑖1 , 𝐟𝑖2 in Cartesian coordinates, 𝑊(𝑆𝐷 (𝐟, 𝑄(𝐟𝑖1 , 𝐟𝑖2))) is the same non-increasing 

function defined in Eq. (4-7), and 𝑆𝐷 (𝐟, 𝑄(𝐟𝑖1 , 𝐟𝑖2)) can be obtained similarly according 

to Eq. (4-4) or Eq. (4-5). 

4.2.2 The Localized WBD 

Although WBD can be highly effective in capturing the shape information by 

using the shape distance, it is specially designed for detecting shape outliers while 

ignoring exact location of each curve. Hence it may not be robust in detecting location 

outliers. As an illustration, considering the example in Figure 4-5, whose curves are 

obtained by first generating two groups of ‘normal’ data from a given process with the 

same distribution, respectively. Then an isolated curve who has the same shape with 

normal curves while being far away from both groups of normal curves is added. It is 

obvious that the isolated curve should be considered as the outlier (more precisely, the 

location outlier), whose depth should be the lowest. However, both BD and WBD treat 
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the isolated curve as the deepest curve. The reason is that, both BD and WBD focus on 

capturing the shape information of each curve, while do not pay attention to the exact 

location of each curve. Since the isolated curve is roughly in the geometric center of the 

data set and it is the curve that is contained in the largest number of bands, both BD and 

WBD assign it with the largest depth value, regardless of whether such curve being 

isolated from the rest of the normal data.  

 

Figure 4-5. Illustration of detecting location outliers. The dashed curve is the outlier 

curve, while two bolded curves (in the geometric center of their corresponding groups of 

normal curves) are curves with largest depths obtained by LWBD (both 𝑐1 and 𝑐2 are 

chosen to be 50-th percentile of empirical distribution of {𝑑(𝑓𝑖1 , 𝑓𝑖2) = max𝑡∈𝒯
|𝑓𝑖1(𝑡) −

𝑓𝑖2(𝑡)| , 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛}). 

To make WBD also robust in detecting location outliers, we further propose the 

localized version of WBD (LWBD). The main idea in LWBD is that distance among 
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curves is decomposed into two parts – shape distance and location distance. Besides the 

shape distance, the location distance is used for capturing the relative location 

information between curves. And contributions of curves to the depth of target curve 𝑓 

decrease as their location distances to 𝑓  increase, which essentially follows the 

localization idea in local-oriented functional depth approaches.  

Specifically, considering a band determined by two functional curves – the target 

curve 𝑓 and another curve 𝑓1 (In LWBD, we still consider 𝐽 = 2). The location distance 

(LD) of 𝑓 to the band 𝐵(𝑓, 𝑓1) is defined as: 

𝐿𝐷(𝑓, 𝐵(𝑓, 𝑓1)) = {
min
𝑡∈𝒯

(𝑓(𝑡) − 𝑓1(𝑡)) , if 𝑓 and 𝑓1 do not cross over

0,                                               if 𝑓 and 𝑓1 cross over
 (4-9) 

Eq. (4-9) suggests that, when 𝑓 is one of the boundary curves of the band, its 

location distance to the band is the smallest distance when vertically moving 𝑓 towards 𝑓1 

until they start crossing over for the first time. Therefore, when two curves already cross 

over, the corresponding location distance is simply just zero. The examples in Figure 4-6 

illustrate the calculations of LD following our definition. 

 

Figure 4-6. Illustration of the location distance of the target curve 𝑓 to the band when it is 

one of the boundary curves of the band. 
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On the other hand, when 𝑓 is fully inside the band 𝐵(𝑓1, 𝑓2) delimited by two 

other curves 𝑓1  and 𝑓2 ; that is, 𝑓 ∉ {𝑓1, 𝑓2}. Without loss of generality, assuming 𝑓2  is 

above 𝑓, the location distance of 𝑓 to the band 𝐵(𝑓1, 𝑓2) is defined as: 

 𝐿𝐷(𝑓, 𝐵(𝑓1, 𝑓2)) = min
𝑡∈𝒯

(𝑓2(𝑡) − 𝑓(𝑡)) + min
𝑡∈𝒯

(𝑓(𝑡) − 𝑓1(𝑡))  (4-10) 

Note that this is just the ‘squeezing’ distance in Eq. (4-4).  

Therefore, for any functional curve 𝑓 in 𝑓1, … , 𝑓𝑛, the LWBD of 𝑓 (when 𝐽 = 2) is 

defined as 

 𝐿𝑊𝐵𝐷𝑛(𝑓) 

= (
𝑛
2
)
−1

∑ 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)))𝑊 (𝑆𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) 𝐼{𝐺(𝑓) ⊆ 𝐵(𝑓𝑖1 , 𝑓𝑖2)}

1≤𝑖1<𝑖2≤𝑛

 
(4-11) 

where 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)))  is a non-increasing function of 𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)), 

which can be obtained following Eq. (4-9) (𝑓 ∈ {𝑓𝑖1 , 𝑓𝑖2}) or Eq. (4-10) (𝑓 ∉ {𝑓𝑖1 , 𝑓𝑖2}). 

Compared to WBD, the localization term 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) is added in LWBD to 

account for the effect of relative location distance between curves. In this chapter, the 

non-increasing function 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) is chosen to follow the same form of Eq. 

(4-7): 

 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) 

= 
2

√2𝜋
exp(−

𝐿𝐷2 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))

2𝑐2
2 ) , 𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2)) ≥ 0, 𝑐2 > 0 

  

(4-12) 

where 𝑐2 is another tuning parameter controlling how fast 𝑊(𝐿𝐷 (𝑓, 𝐵(𝑓𝑖1 , 𝑓𝑖2))) 

dilutes with the increase of the location distance.  
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The finite dimensional version of LWBD for multivariate data can be obtained 

similarly by adding the corresponding localization term to Eq. (4-8); that is, for any point 

𝐟 in 𝐟1, … , 𝐟𝑛, the LWBD of  𝐟 can be calculated as: 

 𝐿𝑊𝐵𝐷𝑛(𝐟) 

= (
𝑛
2
)
−1

∑ 𝑊(𝐿𝐷 (𝐟, 𝑄(𝐟𝑖1 , 𝐟𝑖2)))𝑊 (𝑆𝐷 (𝐟, 𝑄(𝐟𝑖1 , 𝐟𝑖2))) 𝐼{𝐟 ⊆ 𝑄(𝐟𝑖1 , 𝐟𝑖2)}

1≤𝑖1<𝑖2≤𝑛

 
(4-13) 

Back to the illustrated example at the beginning of this section, by taking into 

account the relative location effect between curves, LWBD assigns the isolated curve 

with the lowest depth and thus successfully identifies the isolated curve as an outlier. 

Curves with largest depths obtained by LWBD are those located in the geometric center 

of two corresponding groups of normal curves, respectively, as shown in Figure 4-5. In 

fact, since LWBD considers both location and shape information of each curve, it can be 

robust to both location and shape outliers. In the following section, we would conduct 

simulation studies to demonstrate the usefulness of both WBD and LWBD. 

4.3 Simulation Study 

In this section, simulations are carried out to study the performance of proposed 

weighted band depth approaches in detecting a variety of outliers. We first introduce 

different models upon which the simulated data are generated. A metric is then developed 

to evaluate the detection performance, which is followed by detailed simulation results 

showing the detection performance of each depth approach. 
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4.3.1 Models for Generating Simulated Data 

For each of simulated data set, it consists of 𝑛 sample curves 𝑓1, … , 𝑓𝑛  that are 

generated from a mixture 𝐹𝑚𝑖𝑥 of two stochastic processes, one for normal curves 𝐹𝑛𝑜𝑟 

and one for outliers 𝐹𝑜𝑢𝑡. That is, 

 
𝐹𝑚𝑖𝑥 = {

𝐹𝑛𝑜𝑟 , with probability 1 − 𝛼
𝐹𝑜𝑢𝑡, with probability 𝛼

 

 

(4-14) 

where 𝛼 is the outlier probability (the probability that a curve being an outlier 

equals to 𝛼). All simulated curves are unlabeled, and our goal is to determine for each 

curve whether it is an outlier or not.  

In our simulation study, we consider both shape outliers and location outliers. The 

shape outliers we test are irregular curves in a set of smooth curves (normal curves). 

When the irregularity of the shape outlier is relatively weak, they would have higher 

chance to be enclosed by other bands, and hence being more difficult to be detected. Note 

that this is exactly our motivation of proposing WBD. In addition, we also test different 

types of location outliers to study the robustness of our localized WBD in detecting them 

compared with other popular local-oriented functional depth approaches (HMD and 

KFSD).  

For shape outliers, we consider six models based on the mixture of two stochastic 

processes in Eq. (4-14). The first three mixture models are SHMM1, SHMM2 and 

SHMM3, which share the same 𝐹𝑛𝑜𝑟, with curves generated by:  

 𝑓𝑛𝑜𝑟(𝑡) = 4𝑡 + 휀(𝑡), 𝑡 ∈ [0, 1], (4-15) 

where 휀(𝑡)  is a zero mean Gaussian process with covariance function: 

𝐸(휀(𝑠), 휀(𝑡)) = 0.25exp(−(𝑠 − 𝑡)2). 
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SHMM1, SHMM2 and SHMM3 differ in their 𝐹𝑜𝑢𝑡  components. Their 

corresponding outlier curves are generated by adding to Eq. (4-15) different levels of 

noise: 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑛𝑜𝑟(𝑡) + 휀
′(𝑡), 휀′(𝑡)~𝑁(0, 𝜎2), 

which results in various levels of irregularity of outlier curves. Similar models are 

also considered in Sguera et al. (2016). Note that smaller noise variance levels may lead 

to outliers having higher chance to be enclosed in other bands, making them much more 

difficult to be detected. In our simulation, we choose 𝜎 = 0.2, 0.25, 0.3 for SHMM1, 

SHMM2 and SHMM3, respectively. 

Another three mixture models for generating shape outliers are SHMM4, 

SHMM5 and SHMM6, which also share the same 𝐹𝑛𝑜𝑟, with curves generated by: 

 𝑓𝑛𝑜𝑟(𝑡) = 30(1 − 𝑡)𝑡
2 + 휀(𝑡), 𝑡 ∈ [0, 1] (4-16) 

The outliers in SHMM4, SHMM5 and SHMM6 are generated by adding to Eq. 

(4-16) different levels of irregular functions: 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑛𝑜𝑟(𝑡) + 𝑚|𝑠𝑖𝑛(20𝜋𝑡)|, 𝑡 ∈ [0, 1], 

with 𝑚 = 0.8, 1, 1.2 for SHMM4, SHMM5 and SHMM6, respectively. Similarly, 

when values of 𝑚 are relatively small, the resulted outliers would have more chance to be 

fully inside other bands. Figure 4-7 displays the simulated data set with at least one 

outlier for each of the mixture model in SHMM1 – 6. 
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Figure 4-7. Examples of simulated data sets generated by SHMM1 – 6. Bolded curves are 

outlier curves while others are normal curves. 

The last two mixture models we consider for generating shape outliers are 

SHMM7 and SHMM8. SHMM7 shares the same 𝐹𝑛𝑜𝑟 with curves generated by Eq. (4-

15), while its outlier curves are generated by:  

𝑓𝑜𝑢𝑡(𝑡) = 8𝑡 − 2 + 휀(𝑡), 

which indicates the outliers are different from normal curves in their slopes and 

intercepts.  

For SHMM8, its normal curves are generated by: 

𝑓𝑛𝑜𝑟(𝑡) = 𝑎1sin(𝑡) + 𝑎2cos(𝑡), 𝑡 ∈ [0, 2𝜋], 

where 𝑎1 and 𝑎2 are both continuous random numbers generated from a uniform 

distribution on [0.05, 0.15]. The outlier curves in SHMM8 are generated by: 

𝑓𝑜𝑢𝑡(𝑡) = 𝑎1sin(𝑡) + exp (
0.69𝑡

2𝜋
) 𝑎3cos(𝑡), 
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where 𝑎3 is a continuous random number generated from a uniform distribution 

on [0.1, 0.15]. Figure 4-8 displays the simulated data set with at least one outlier for 

mixture models in SHMM7 and SHMM8. 

 

Figure 4-8. Examples of simulated data sets generated by SHMM7 and SHMM8. Bolded 

curves are outlier curves while others are normal curves. 

For location outliers, we consider four different models LOMM1 – 4 based on the 

mixture of two stochastic processes in Eq. (4-14). Specifically, LOMM1 – 4 share the 

same 𝐹𝑛𝑜𝑟 with curves generated by Eq. (4-15), while varying in their 𝐹𝑜𝑢𝑡 components. 

Specifically, for LOMM1, the outlier curves are generated by:  

𝑓𝑜𝑢𝑡(𝑡) = 4 exp(𝑡) + 휀(𝑡), 

where the outliers are normal in the initial time domain, but become exponentially 

outlying afterwards. This mixture model is also considered in Sguera et al. (2016). 

For LOMM2, the outlier curves are generated by: 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑛𝑜𝑟(𝑡) + 𝐾, 

where 𝐾 is a constant contaminated location of normal curves.  

For LOMM3, the outlier curves are generated by: 
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𝑓𝑜𝑢𝑡(𝑡) = {
𝑓𝑛𝑜𝑟(𝑡), 𝑡 ∈ [0, 𝑇)

𝑓𝑛𝑜𝑟(𝑡) + 𝐾, 𝑡 ∈ [𝑇, 1]
, 

where 𝑇  is a random number generated from a uniform distribution on [0, 1]. 

Different from LOMM2, the resulted outliers are partial contaminations of normal 

curves. They are the same as normal curves before time 𝑇 , while increasing by the 

contamination constant 𝐾 after time 𝑇.  

For LOMM4, the outlier curves are generated by: 

𝑓𝑜𝑢𝑡(𝑡) = {
𝑓𝑛𝑜𝑟(𝑡), 𝑡 ∉ [𝑇, 𝑇 + 𝑙]

𝑓𝑛𝑜𝑟(𝑡) + 𝐾, 𝑡 ∈ [𝑇, 𝑇 + 𝑙]
, 𝑙 =

2

50
, 

where 𝑇 is a random number generated from a uniform distribution on [0, 1 − 𝑙]. 

The resulted outliers are contaminations of peaks of normal curves. LOMM2 – 4 are 

similar to mixture models considered in López-Pintado and Romo (2009), with different 

covariance functions of 휀(𝑡). 

Figure 4-9 illustrates the simulated data set with at least one outlier for each of the 

mixture model in LOMM1 – 4. As can be seen, strictly speaking, outliers in LOMM1, 

LOMM3 and LOMM4 are actually a mixture of location and shape outliers. Since these 

outliers having different shapes are mainly caused by their largely shifted locations, in 

this chapter we simply consider them as location outliers. 
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Figure 4-9. Examples of simulated data sets generated by LOMM1 – 4 (𝐾 = 25 for 

LOMM2, LOMM3 and LOMM4). Bolded curves are outlier curves while others are 

normal curves. 

4.3.2 Performance Evaluation 

Let 𝑁 be the number of simulated data sets for each mixture model, and 𝑛𝑜𝑢𝑡,𝑖, 𝑖 =

1, … , 𝑁 be the number of outliers in the i-th data set (in this chapter, we only consider 

𝑛𝑜𝑢𝑡,𝑖 > 0; that is, if 𝑛𝑜𝑢𝑡,𝑖 = 0, the data set would be re-generated until 𝑛𝑜𝑢𝑡,𝑖 > 0). For 

each data set and calculated functional depths of curves in the data set, it is desirable that 

the 𝑛𝑜𝑢𝑡,𝑖 lowest depths are assigned to the 𝑛𝑜𝑢𝑡,𝑖 generated outliers. Hence, to evaluate 

the detection performance of each method, the outlier detection accuracy (ODA) for these 

𝑁 data sets is defined as: 



www.manaraa.com

92 
 

 
 

 

𝑂𝐷𝐴 =
1

𝑁
∑

𝑛(𝐴𝑖 ∩ 𝐵𝑖)

𝑛𝑜𝑢𝑡,𝑖

𝑁

𝑖=1

, 

 

(4-17) 

where 𝐴𝑖 = {𝑓
(1), 𝑓(2), … 𝑓(𝑛𝑜𝑢𝑡,𝑖)} is the set of curves in the 𝑖-th data set having 

𝑛𝑜𝑢𝑡,𝑖 smallest depths obtained by each depth approach, 𝐵𝑖 is the set of all outlier curves 

generated in the 𝑖-th data set, and 𝑛(𝐴𝑖 ∩ 𝐵𝑖) is the number of common elements in 𝐴𝑖 

and 𝐵𝑖. It is obvious that the higher the ODA is, the better the detection performance of 

the method is. 

4.3.3 Simulation Results 

Our simulation setup is as follows: for each of the mixture model introduced 

above, we consider 𝑁 = 100  data sets, each consists of 𝑛 = 50  curves with outlier 

probability 𝛼 = 0.05 , contamination constant 𝐾 = 25  for LOMM2, LOMM3 and 

LOMM4. And each curve is generated using a finite set of 51 equally spaced points in the 

corresponding time domain. Hence finite dimensional versions of each method are used 

to calculate the depth of each curve. The kernel function used in HMD is 𝜅(𝑓𝑖1 , 𝑓𝑖2) =

2

√2𝜋
exp (−

𝑑(𝑓𝑖1 ,𝑓𝑖2)

2𝜅1
2 ) , 𝜅1 > 0 (Febrero et al., 2008) and the kernel function used in KFSD 

is 𝜅(𝑓𝑖1 , 𝑓𝑖2) = exp (−
𝑑(𝑓𝑖1 ,𝑓𝑖2)

𝜅2
2 ) , 𝜅2 > 0  (Sguera et al., 2016), where the distance 

measurements 𝑑(𝑓𝑖1 , 𝑓𝑖2) are both chosen to be the maximum norm, which is consistent 

with our methods. The tuning parameters 𝑐1, 𝑐2, 𝜅1, 𝜅2  in kernel functions of WBD, 

LWBD, HMD and KFSD are all chosen to be the 𝑝-th (0 < 𝑝 ≤ 100) percentile of the 

empirical distribution of {𝑑(𝑓𝑖1 , 𝑓𝑖2), 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛}, where 𝑑(𝑓𝑖1 , 𝑓𝑖2) is also chosen to 

be the maximum norm. We consider 14 different values of 𝑝, and each different value 
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corresponds to one of 14 different percentiles of corresponding empirical distributions for 

each data set. 

Table 4-1. Simulation results of ODA using WBD, LWBD, HMD, KFSD and BD for 

mixture models SHMM1 – 8 producing shape outliers (For HMD and KFSD, only results 

of the best average ODA are shown. See APPENDIX H for their complete results) 

WBD 

𝑝 SHMM1 SHMM2 SHMM3 SHMM4 SHMM5 SHMM6 SHMM7 SHMM8 Average 

0.1 95.72% 97.17% 98.17% 74.84% 64.88% 72.93% 71.31% 80.61% 81.95% 

0.5 95.72% 97.17% 98.17% 75.73% 66.17% 74.88% 72.38% 84.77% 83.12% 

1 96.22% 97.17% 98.17% 77.85% 67.08% 74.99% 74.23% 84.77% 83.81% 

5 94.38% 97.72% 99.50% 87.45% 84.25% 86.25% 86.38% 86.62% 90.32% 

10 89.26% 95.98% 99.25% 89.50% 91.35% 91.43% 93.11% 91.62% 92.69% 

20 78.26% 88.87% 97.13% 83.80% 94.10% 95.98% 97.68% 98.04% 91.73% 

30 64.78% 84.02% 95.47% 78.60% 94.10% 96.65% 99.67% 99.75% 89.13% 

40 58.96% 79.99% 93.13% 72.68% 92.35% 96.18% 99.83% 99.88% 86.63% 

50 57.53% 77.66% 89.35% 69.43% 87.68% 94.18% 100.00% 99.88% 84.46% 

60 53.41% 72.97% 88.12% 67.76% 85.53% 93.35% 100.00% 99.88% 82.63% 

70 51.05% 69.39% 87.21% 65.26% 83.87% 92.35% 100.00% 99.88% 81.12% 

80 47.31% 65.36% 86.96% 64.93% 82.12% 91.73% 100.00% 99.88% 79.79% 

90 46.86% 61.46% 86.81% 61.81% 79.08% 90.12% 100.00% 99.01% 78.15% 

100 41.35% 59.62% 81.73% 57.83% 72.25% 88.04% 100.00% 96.83% 74.71% 

Overall 69.34% 81.75% 92.80% 73.39% 81.77% 88.51% 92.47% 94.39% 84.30% 

LWBD 

0.1 90.26% 96.22% 99.75% 64.48% 78.66% 72.25% 75.70% 85.03% 82.79% 

0.5 91.74% 97.22% 99.75% 65.47% 79.48% 73.33% 77.27% 88.53% 84.10% 

1 90.61% 97.72% 99.75% 67.83% 79.87% 74.26% 78.67% 88.53% 84.66% 

5 89.43% 96.13% 99.75% 76.15% 86.93% 84.23% 88.15% 90.73% 88.94% 

10 81.41% 93.77% 99.42% 79.64% 92.91% 91.85% 92.96% 94.20% 90.77% 

20 67.56% 85.27% 95.75% 76.93% 94.93% 96.98% 99.09% 97.47% 89.25% 

30 58.44% 79.58% 95.33% 74.73% 92.85% 97.45% 100.00% 99.55% 87.24% 

40 54.66% 78.02% 91.83% 70.13% 91.10% 96.07% 100.00% 100.00% 85.23% 

50 50.45% 70.55% 90.25% 63.14% 86.97% 94.82% 100.00% 100.00% 82.02% 

60 48.41% 65.31% 87.33% 58.79% 83.46% 92.74% 100.00% 100.00% 79.51% 

70 46.91% 62.11% 85.83% 57.92% 82.34% 92.74% 100.00% 99.50% 78.42% 

80 45.91% 60.16% 82.27% 55.80% 81.59% 92.54% 100.00% 99.50% 77.22% 

90 43.88% 57.58% 80.40% 53.43% 80.63% 91.01% 100.00% 99.30% 75.78% 

100 42.29% 55.25% 77.53% 50.15% 78.46% 88.64% 99.83% 98.52% 73.83% 

Overall 64.43% 78.21% 91.78% 65.33% 85.01% 88.49% 93.69% 95.78% 82.84% 

BD 13.91% 18.17% 15.85% 14.80% 19.47% 17.99% 24.73% 21.13% 18.26% 

Best HMD 62.79% 76.16% 86.98% 60.43% 60.67% 73.62% 76.70% 85.59% 72.87% 

Best KFSD 58.66% 74.74% 85.90% 62.26% 61.62% 75.90% 77.96% 91.72% 73.60% 

Table 4-1 presents simulation results of the outlier detection accuracy with 

comparison of WBD, LWBD, BD, HMD and KFSD (see APPENDIX H for complete 

results of HMD and KFSD) for the eight mixture models that produce shape outliers. For 

the first six models SHMM1 – 6, since their levels of irregularity are relatively small, the 

resulted shape outliers would have high chance to be enclosed by other bands, which 
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results in poor detection performance of BD. However, as can be seen, the detection 

accuracy of both WBD and LWBD significantly outperform BD, HMD and KFSD for six 

models SHMM1 – 6, regardless of values of tuning parameters. For mixture models 

SHMM7 and SHMM8, WBD, LWBD, HMD and KFSD have similar detection accuracy, 

while all outperform BD. In comparing WBD and LWBD, WBD has slightly better 

detection accuracy than LWBD. This demonstrates that the idea of shape distance in 

WBD and LWBD can be particularly effective in detecting shape outliers confounded 

with those normal curves that are also fully inside the bands. 

Table 4-2. Simulation results of ODA using WBD, LWBD, HMD, KFSD and BD for 

mixture models LOMM1 – 4 producing location outliers (For HMD and KFSD, only 

results of the best average ODA are shown. See APPENDIX I for their complete results) 

WBD 

𝑝 LOMM1 LOMM2 LOMM3 LOMM4 Average 

0.1 65.88% 5.63% 98.93% 99.35% 67.45% 

0.5 67.32% 5.38% 98.93% 99.55% 67.80% 

1 71.00% 5.38% 98.93% 99.88% 68.80% 

5 80.05% 5.72% 100.00% 99.88% 71.41% 

10 86.45% 4.58% 100.00% 99.88% 72.73% 

20 90.18% 5.48% 100.00% 100.00% 73.92% 

30 95.10% 5.65% 100.00% 100.00% 75.19% 

40 99.02% 5.65% 100.00% 100.00% 76.17% 

50 99.60% 5.65% 100.00% 100.00% 76.31% 

60 99.60% 5.45% 100.00% 100.00% 76.26% 

70 99.60% 5.28% 100.00% 100.00% 76.22% 

80 98.10% 5.78% 100.00% 100.00% 75.97% 

90 82.92% 10.20% 100.00% 100.00% 73.28% 

100 77.23% 14.20% 99.83% 100.00% 72.82% 

Overall 86.58% 6.43% 99.76% 99.89% 73.17% 

LWBD 

0.1 65.98% 82.11% 100.00% 99.80% 86.97% 

0.5 66.52% 87.17% 100.00% 100.00% 88.42% 

1 67.85% 89.07% 100.00% 100.00% 89.23% 

5 77.38% 95.94% 100.00% 100.00% 93.33% 

10 87.55% 99.12% 100.00% 100.00% 96.67% 

20 97.23% 99.80% 100.00% 100.00% 99.26% 

30 99.50% 99.80% 100.00% 100.00% 99.83% 

40 100.00% 100.00% 100.00% 100.00% 100.00% 

50 100.00% 100.00% 100.00% 100.00% 100.00% 

60 100.00% 100.00% 100.00% 100.00% 100.00% 

70 100.00% 100.00% 100.00% 100.00% 100.00% 

80 99.86% 100.00% 100.00% 100.00% 99.96% 

90 99.71% 100.00% 100.00% 100.00% 99.93% 

100 97.28% 100.00% 100.00% 100.00% 99.32% 

Overall 89.92% 96.64% 100.00% 99.99% 96.64% 

BD 27.73% 18.12% 12.94% 12.89% 17.92% 

Best HMD 100.00% 100.00% 100.00% 100.00% 100.00% 

Best KFSD 100.00% 100.00% 100.00% 100.00% 100.00% 
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For the four mixture models producing location outliers, Table 4-2 gives 

corresponding simulation results of ODA using WBD, LWBD, BD, HMD and KFSD 

(see APPENDIX I for complete results of HMD and KFSD). The detection accuracy of 

three local-oriented depth approaches (LWBD, HMD and KFSD) all outperform WBD 

and BD. In several cases, they even achieve all perfect detection accuracy. WBD 

achieves high detection accuracy across six models except for LOMM2, which produces 

location outliers that have exactly the same shape with normal curves. Therefore WBD 

has difficulty in detecting them. The low detection accuracy of BD results from having 

many depth ties – depths of outliers are equal to those of normal curves located near or 

on the geometric boundary of all curves in the data set. Hence BD lacks strength in 

distinguishing between them. 

4.4 Application 

In this section, we study the performance of proposed weighted band depth 

approaches applied to a real data example from the food industry. Each observation in the 

data set corresponds to the fat content of a finely chopped meat sample based on the near-

infrared absorbance spectrum, with a 100-channel spectrum (that is, 100 equally spaced 

points) of absorbance in the wavelength range 850 – 1050 nm. This data set separates 

different meat samples into two levels of fat content – high fat content (fat content greater 

than 20%, totally 77 observations) and low fat content (fat content less than 20%, totally 

138 observations), as shown in Figure 4-10. For more details of this data set, please refer 

to Ferraty and Vieu (2003) and Rossi and Villa (2006). 

It can be observed from Figure 4-10 that the major difference of these two levels 

of fat content is in the shape of the functional curves. More precisely, they are different in 
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their curvature (i.e., the second derivative): observations with high fat content have 

sometimes two local maxima rather than one in observations of low fat content. 

However, such difference is relatively small, as we can see the first local maxima in 

observations with high fat content is sometimes rather subtle, which makes it much 

difficult to be distinguished with observations having low fat content. Because of this, 

most of the existing methods classify these two levels of fat content by taking the second 

derivative of the data (Ferraty and Vieu, 2002; Ferraty and Vieu, 2003; Rossi and Villa, 

2006), which introduces additional computational cost. Since the shape distance in our 

proposed depth approaches are particularly sensitive for distinguishing curves with 

different shapes, we would like to apply our methods directly to the data without taking 

any derivative. 

For the purpose of the outlier detection, we treat observations with low fat content 

as normal curves while observations having high fat content are outliers. The outlier 

detection performance of the proposed methods is evaluated based on calculating the 

ODA defined in Eq. (4-17), with 𝑁 = 100 data sets. Each data set consists of 𝑛 = 50 

curves, of which 45 curves (normal curves) are randomly selected from totally 138 

observations with low fat content and 5 curves (outliers) are randomly selected from 

totally 77 observations having high fat content. BD, HMD and KFSD are also 

implemented as comparison. 
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Figure 4-10. The near-infrared absorbance spectrum for both high and low fat content of 

meat samples. 

Table 4-3 gives results of the best ODA using different depth approaches for the 

fat data (complete results with different values of tuning parameters for WBD, LWBD, 

HMD and KFSD can be found in APPENDIX J).  As can be seen, the proposed depth 

methods achieve much better detection performance than the other depth approaches, 

which demonstrate the usefulness of our proposed methods in differentiating curves with 

various shapes. 

Table 4-3. Best ODA of different depth approaches 

Method WBD LWBD BD HMD KFSD 

Best ODA 50.20% 40.60% 9.20% 30.20% 30.40% 

4.5 Summary 

In this chapter we focus on detecting outliers in functional data by the use of 

functional depth. Inspired by the band depth (BD) proposed in recent literature, we 

propose two new depth approaches for functional data – the weighted band depth (WBD) 

and its localized version (LWBD). By introducing the idea of shape distance, which is 
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highly sensitive to shape differences among curves, both WBD and LWBD have 

substantially improved strength in detecting various shape outliers compared to BD. The 

LWBD is also robust in detecting location outliers by using the localization idea that 

takes into account the relative location information among curves.   

The detection performance of our proposed depth approaches are evaluated 

through both simulated data and a real data example. Results demonstrate advantages of 

WBD and LWBD over BD in detecting both shape and location outliers. LWBD also 

shows its robustness in detecting location outliers and is less sensitive to the tuning 

parameter compared to other popular local-oriented functional depth approaches.  
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

In this thesis, we study change and outlier detection problems and their 

applications for longitudinal and functional data. Two types of change detection problems 

are considered. The first type of problems concerns about on-line change detection within 

a single longitudinal trend. In particularly, we discuss two engineering applications. The 

first application focuses on the on-line steady state detection, where we would like to 

identify the transition point between the transient period and steady state period in real 

time. In Chapter 2, we develop a new on-line steady state detection algorithm under the 

Bayesian framework based on a multiple change-point state space model and the 

sequential Monte Carlo methods. The main contribution of this work is by using the Rao-

Blackwellization technique, variance of Monte Carlo estimation is significantly reduced 

and the computational efficiency is significantly improved compared to the standard 

SMC algorithm. A resampling method called the Optimal Resampling is also used to 

make more efficient use of the particle information and further improve the robustness of 

the steady state detection. 

In Chapter 3, we consider another engineering application of the on-line change 

detection, which is on-line detection of changes of process mean in the short-run process. 

Inspired by the model proposed by Tsiamyrtzis and Hawkins (2005), we propose two 

new models that are more suitable and flexible for practical situations. There are three 

main contributions of this work. Firstly, compared to the exponential computational cost 

in Tsiamyrtzis and Hawkins (2005), our work leads to significantly reduced computation 

burden. Secondly, our method is shown to be more robust to parameter misspecifications 

by requiring less knowledge on the process parameters (such as the jump size and 
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measurement noise variance). Thirdly, a new efficient approximation method is also 

proposed for processes with constant and unknown variance, while the computational 

cost is unchanged. 

The other type of change detection problems is studied in Chapter 4, where we 

focus on outlier detection for a set of longitudinal or functional data. Inspired by the band 

depth in López-Pintado and Romo (2009), we propose two new depth approaches for 

functional data – the weighted band depth and the localized weighted band depth. 

Compared to existing depth approaches for functional data, our proposed depth notions 

are shown to be more robust in detecting a variety type of outliers (both shape and 

location outliers) by using our novel idea called the shape distance. 

For the on-line change detection problems, note that we only consider the 

problem with univariate observations. A potential future work is to develop methods for 

multivariate data. Regarding the outlier detection for functional data, based on our current 

work, in the future more applications of WBD and LWBD can be explored, such as 

making robust inference (the trimmed mean) or performing classification for functional 

data. We can also consider a more general definition of the band in WBD and LWBD 

with more than two boundary curves. Additionally, study on theoretical properties of the 

proposed functional depths can be also a potential future work. 
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APPENDIX A. PROOF OF LEMMA 2-1 IN SECTION 2.2.2 

The joint posterior distribution of  𝛃𝑡 and 𝜎𝑡
2 is:  

𝑝(𝛃𝑡 , 𝜎𝑡
2|𝜏𝑡, 𝐲𝜏𝑡:𝑡) = 𝑝(𝛃𝑡|𝜎𝑡

2, 𝜏𝑡, 𝐲𝜏𝑡:𝑡)𝑝(𝜎𝑡
2|𝜏𝑡, 𝐲𝜏𝑡:𝑡) 

∝ (𝜎𝑡
2)−1𝑒𝑥𝑝 {−

1

2𝜎𝑡
2 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡)

𝑇
𝚺𝜏𝑡,𝑡
−1 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡)} (𝜎𝑡

2)−(𝑎𝜏𝑡,𝑡+1)𝑒𝑥𝑝 {−
𝑏𝜏𝑡,𝑡

𝜎𝑡
2 } 

= (𝜎𝑡
2)−(𝑎𝜏𝑡,𝑡+1+1)𝑒𝑥𝑝 {−

1

𝜎𝑡
2 (𝑏𝜏𝑡,𝑡 +

1

2
(𝛃𝑡 − 𝛍𝜏𝑡,𝑡)

𝑇
𝚺𝜏𝑡,𝑡
−1 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡))} 

Let  𝐴 = 𝑏𝜏𝑡,𝑡 +
1

2
(𝛃𝑡 − 𝛍𝜏𝑡,𝑡)

𝑇
𝚺𝜏𝑡,𝑡
−1 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡) 

The marginal posterior distribution of  𝛃𝑡 can be obtained after integrating out 𝜎𝑡
2: 

𝑝(𝛃𝑡|𝜏𝑡, 𝐲𝜏𝑡:𝑡) = ∫𝑝(𝛃𝑡, 𝜎𝑡
2|𝜏𝑡, 𝐲𝜏𝑡:𝑡)𝑑𝜎𝑡

2 ∝ ∫(𝜎𝑡
2)−(𝑎𝜏𝑡,𝑡+1+1) 𝑒𝑥𝑝 {−

1

𝜎𝑡
2 𝐴} 𝑑𝜎𝑡

2 

= ∫
𝐴𝑎𝜏𝑡,𝑡+1

Γ(𝑎𝜏𝑡,𝑡 + 1)
(𝜎𝑡

2)−(𝑎𝜏𝑡,𝑡+1+1) 𝑒𝑥𝑝 {−
1

𝜎𝑡
2 𝐴} 𝑑𝜎𝑡

2
Γ(𝑎𝜏𝑡,𝑡 + 1)

𝐴𝑎𝜏𝑡,𝑡+1
∝ 𝐴−(𝑎𝜏𝑡,𝑡+1) 

= (𝑏𝜏𝑡,𝑡 +
1

2
(𝛃𝑡 − 𝛍𝜏𝑡,𝑡)

𝑇
𝚺𝜏𝑡,𝑡
−1 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡))

−(𝑎𝜏𝑡,𝑡+1)

 

∝

(

 1 +
1

2𝑎𝜏𝑡,𝑡

(𝛃𝑡 − 𝛍𝜏𝑡,𝑡)
𝑇
𝚺𝜏𝑡,𝑡
−1 (𝛃𝑡 − 𝛍𝜏𝑡,𝑡)

𝑏𝜏𝑡,𝑡
𝑎𝜏𝑡,𝑡 )

 

−(
2𝑎𝜏𝑡,𝑡+2

2
)

 

Therefore (𝛃𝑡|𝜏𝑡, 𝐲𝜏𝑡:𝑡)~𝑡2 (𝛍𝜏𝑡,𝑡,
𝑏𝜏𝑡,𝑡

𝑎𝜏𝑡,𝑡
𝚺𝜏𝑡,𝑡, 2𝑎𝜏𝑡,𝑡). 
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APPENDIX B. PROOF OF LEMMA 2-2 IN SECTION 2.2.2 

(a). If 𝜏𝑡 = 𝜏𝑡−1, we are making posterior inferences based on the observations 𝐲𝜏𝑡−1:𝑡−1. 

Since (𝛃𝑡−1|𝜎𝑡−1
2 , 𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)~𝑁(𝛍𝜏𝑡,𝑡−1, 𝜎𝑡−1

2 𝚺𝜏𝑡,𝑡−1), we have 

(𝐗𝑡𝛃𝑡−1|𝜎𝑡−1
2 , 𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)~𝑁(𝐗𝑡𝛍𝜏𝑡,𝑡−1, 𝜎𝑡−1

2 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇) 

And the conditional distribution of  𝑦𝑡 would be: 

(𝑦𝑡|𝜎𝑡−1
2 , 𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)~𝑁 (𝐗𝑡𝛍𝜏𝑡,𝑡−1, 𝜎𝑡−1

2 (1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇)) 

The joint posterior distribution of 𝑦𝑡, 𝜎𝑡−1
2  is: 

𝑝(𝑦𝑡, 𝜎𝑡−1
2 |𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1) 

= 𝑝(𝑦𝑡|𝜎𝑡−1
2 , 𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)𝑝(𝜎𝑡−1

2 |𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1) 

∝ (𝜎𝑡−1
2 )−1/2𝑒𝑥𝑝 {−

(𝑦𝑡 − 𝐗𝑡𝛍𝜏𝑡,𝑡−1)
2

2𝜎𝑡−1
2 (1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡

𝑇)
} (𝜎𝑡−1

2 )−(𝑎𝜏𝑡,𝑡−1+1)𝑒𝑥𝑝 {−
𝑏𝜏𝑡,𝑡−1

𝜎𝑡−1
2 } 

= (𝜎𝑡−1
2 )−(𝑎𝜏𝑡,𝑡−1+

1
2
+1)
𝑒𝑥𝑝 {−

1

𝜎𝑡−1
2 (𝑏𝜏𝑡,𝑡−1 +

(𝑦𝑡 − 𝐗𝑡𝛍𝜏𝑡,𝑡−1)
2

2(1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇)
)} 

Let  𝐵 = 𝑏𝜏𝑡,𝑡−1 +
(𝑦𝑡−𝐗𝑡𝛍𝜏𝑡,𝑡−1)

2

2(1+𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇)

 

The posterior predictive distribution of  𝑦𝑡 can be obtained after integrating out 𝜎𝑡−1
2 : 

𝑝(𝑦𝑡|𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1) = ∫𝑝(𝑦𝑡, 𝜎𝑡−1
2 |𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)𝑑𝜎𝑡−1

2  

∝ ∫(𝜎𝑡−1
2 )−(𝑎𝜏𝑡,𝑡−1+

1
2
+1) 𝑒𝑥𝑝 {−

1

𝜎𝑡−1
2 𝐵}𝑑𝜎𝑡−1

2  

= ∫
𝐵𝑎𝜏𝑡,𝑡−1+

1
2

Γ (𝑎𝜏𝑡,𝑡−1 +
1
2)
(𝜎𝑡−1

2 )−(𝑎𝜏𝑡,𝑡−1+
1
2
+1) 𝑒𝑥𝑝 {−

1

𝜎𝑡−1
2 𝐵}𝑑𝜎𝑡−1

2
Γ (𝑎𝜏𝑡,𝑡−1 +

1
2)

𝐵𝑎𝜏𝑡,𝑡−1+
1
2

  

∝ 𝐵−(𝑎𝜏𝑡,𝑡−1+
1
2
) = (𝑏𝜏𝑡,𝑡−1 +

(𝑦𝑡 − 𝐗𝑡𝛍𝜏𝑡,𝑡−1)
2

2(1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇)
)

−(𝑎𝜏𝑡,𝑡−1+
1
2
)
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∝

(

 1 +
1

2𝑎𝜏𝑡,𝑡−1

(𝑦𝑡 − 𝐗𝑡𝛍𝜏𝑡,𝑡−1)
2

𝑏𝜏𝑡,𝑡−1
𝑎𝜏𝑡,𝑡−1

(1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡
𝑇)
)

 

−(
2𝑎𝜏𝑡,𝑡−1+1

2
)

 

Therefore (𝑦𝑡|𝜏𝑡 = 𝜏𝑡−1, 𝐲𝜏𝑡−1:𝑡−1)~𝑡1 (𝐗𝑡𝛍𝜏𝑡,𝑡−1,
𝑏𝜏𝑡,𝑡−1

𝑎𝜏𝑡,𝑡−1
(1 + 𝐗𝑡𝚺𝜏𝑡,𝑡−1𝐗𝑡

𝑇), 2𝑎𝜏𝑡,𝑡−1) 

(b). If 𝜏𝑡 = 𝑡, 𝑦𝑡 is independent of 𝐲0:𝑡−1 and we are making posterior inferences based 

on the prior information. That is to say, 𝑝(𝑦𝑡|𝜏𝑡 = 𝑡, 𝐲𝜏𝑡:𝑡−1) = 𝑝(𝑦𝑡). Therefore, we 

have: 

(𝑦𝑡|𝜏𝑡 = 𝑡, 𝐲𝜏𝑡:𝑡−1)~𝑡1 (𝐗𝑡𝛍0,
𝑏0

𝑎0
(1 + 𝐗𝑡𝚺0𝐗𝑡

𝑇), 2𝑎0). 
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APPENDIX C. THE STRATIFIED SAMPLING ALGORITHM IN SECTION 2.2.3 

Let 𝑤𝑡
(𝑖)

, 𝑖 = 1,2, … , 𝑛𝑑 + 1 − 𝑞   be the weights of remaining particles to be 

resampled, a total of 𝑛𝑑 − 𝑞 particles need to be resampled. With the unique solution 𝑐, 

we apply the stratified sampling algorithm of Carpenter et al. (1999):  

• Initialize: simulate 𝑠 as the realization of a uniform random variable on [0, 1/𝑐], 

and set 𝑖 = 1. 

• While 𝑖 ≤ 𝑛𝑑 + 1 − 𝑞  do: 

             𝑠 = 𝑠 − 𝑤𝑡
(𝑖)

. 

             If 𝑠 < 0 do 

                    Resample particle 𝑖, assign it with weight 1/𝑐; 

                    𝑠 = 𝑠 + 1/𝑐. 

              End 

             𝑖 = 𝑖 + 1. 

End 
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APPENDIX D. NORMAL APPROXIMATION OF RBSMC DETECTION 

RESULTS IN SECTION 2.3.4 

RBSMC detection results for AR(0) noise with both exact calculations and normal 

approximations for the pdf of student’s 𝑡 distribution: 

Signal 𝜎 
WSDE FAR 

Exact Approximation Exact Approximation 

   Linear 

h=1, 

T0=200 

0.06 52.6 52.6 0 0 

0.10 55.7 55.0 0 0 

0.14 59.6 59.6 0 0 

h=1, 

T0=300 

0.06 46.7 45.9 0 0 

0.10 49.9 49.5 0 0 

0.14 53.5 54.5 0.01 0.01 

Quadratic 

h=1, 

T0=200 

0.06 17.6 17.4 0.01 0.01 

0.10 22.8 22.8 0.03 0.02 

0.14 26.3 27.5 0.06 0.06 

h=1, 

T0=300 

0.06 20.0 21.3 0.89 0.93 

0.10 24.4 23.7 0.81 0.77 

0.14 29.9 28.7 0.71 0.75 

Exponential 

h=1, 

T0=200 

0.06 23.3 24.5 0.01 0.01 

0.10 28.1 28.9 0.07 0.06 

0.14 31.7 32.5 0.12 0.11 

h=1, 

T0=300 

0.06 37.6 38.9 0.93 0.92 

0.10 45.4 44.0 0.85 0.87 

0.14 51.1 52.1 0.85 0.86 

Oscillating 

h=1, 

T0=200 

0.06 23.1 23.4 0 0 

0.10 29.3 28.6 0 0 

0.14 38.7 40.0 0 0 

h=1, 

T0=300 

0.06 9.4 9.8 0.39 0.39 

0.10 19.5 20.8 0.21 0.19 

0.14 32.6 31.4 0.07 0.05 

Overall 37.3 37.3 0.25 0.25 
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APPENDIX E. PROOF OF LEMMA 3-1 IN SECTION 3.2.2 

(1) If 𝑠 < 𝑡, using posterior distributions from line segment 𝐲𝑠:𝑡−1 as prior, based on the 

KF recursive procedures we can easily obtain:  

𝜇𝜃𝑠,𝑡 =
𝜎2

𝜎𝜃𝑠,𝑡−1
2 + 𝜎𝑅𝑊

2 + 𝜎2
𝜇𝜃𝑠,𝑡−1 +

𝜎𝜃𝑠,𝑡−1
2 + 𝜎𝑅𝑊

2

𝜎𝜃𝑠,𝑡−1
2 + 𝜎𝑅𝑊

2 + 𝜎2
𝑦𝑡 

𝜎𝜃𝑠,𝑡
2 =

𝜎𝜃𝑠,𝑡−1
2 + 𝜎𝑅𝑊

2

𝜎𝜃𝑠,𝑡−1
2 + 𝜎𝑅𝑊

2 + 𝜎2
𝜎2 

Since 
𝑃(𝑠,𝑡)

𝑃(𝑠,𝑡−1)
= 𝑝(𝑦𝑡|𝐲𝑠:𝑡−1). With KF, (𝜃𝑡−1|𝐲𝑠:𝑡−1)~𝑁 (𝜇𝜃𝑠,𝑡−1 , 𝜎𝜃𝑠,𝑡−1

2 ), and following 

model (3-2), (𝜃𝑡|𝜃𝑡−1)~𝑁(𝜃𝑡−1, 𝜎𝑅𝑊
2 ), it is easy to have (𝜃𝑡|𝐲𝑠:𝑡−1)~𝑁 (𝜇𝜃𝑠,𝑡−1 , 𝜎𝜃𝑠,𝑡−1

2 +

𝜎𝑅𝑊
2 ). Since (𝑦𝑡|𝜃𝑡)~𝑁(𝜃𝑡 , 𝜎

2), we have (𝑦𝑡|𝐲𝑠:𝑡−1)~𝑁 (𝜇𝜃𝑠,𝑡−1 , 𝜎𝜃𝑠,𝑡−1
2 + 𝜎2 + 𝜎𝑅𝑊

2 ). 

Therefore we have  
𝑃(𝑠,𝑡)

𝑃(𝑠,𝑡−1)
= 𝑝(𝑦𝑡|𝐲𝑠:𝑡−1)~𝑁 (𝜇𝜃𝑠,𝑡−1 , 𝜎𝜃𝑠,𝑡−1

2 + 𝜎2 + 𝜎𝑅𝑊
2 ). 

(2) If 𝑠 = 𝑡, following the same logic, we can obtain: 

𝜇𝜃𝑡,𝑡 =
𝜎2

𝜎𝐽
2+𝜎𝑅𝑊

2 +𝜎2
𝜇𝐽 +

𝜎𝐽
2+𝜎𝑅𝑊

2

𝜎𝐽
2+𝜎𝑅𝑊

2 +𝜎2
𝑦𝑡, 𝜎𝜃𝑡,𝑡

2 =
𝜎𝐽
2+𝜎𝑅𝑊

2

𝜎𝐽
2+𝜎𝑅𝑊

2 +𝜎2
𝜎2, and 

𝑃(𝑡, 𝑡) = 𝑝(𝑦𝑡)~𝑁(𝜇𝐽, 𝜎𝑅𝑊
2 + 𝜎2 + 𝜎𝐽

2). 
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APPENDIX F. PROOF OF LEMMA 3-2 IN SECTION 3.2.3 

(1) The proof follows the same procedure in Chapter 9 (Pages 244-246) of O’Hagan 

(1994). 

(2) Since the process mean 𝜃𝑡 = 𝐱𝑡𝛃𝑡. Based on the results from (1), we have: 

(𝜃𝑡|𝜎𝑡
2, 𝜏𝑡 = 𝑠, 𝒚𝑠:𝑡)~𝑁(𝐱𝑡𝛍𝑡

𝑠, 𝜎𝑡
2𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇) 

The joint posterior distribution of  𝜃𝑡 and 𝜎𝑡
2 is: 

𝑝(𝜃𝑡, 𝜎𝑡
2|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) = 𝑝(𝜃𝑡|𝜎𝑡

2, 𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)𝑝(𝜎𝑡
2|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) 

∝ (𝜎𝑡
2)−

1
2𝑒𝑥𝑝 {−

(𝜃𝑡 − 𝐱𝑡𝛍𝑡
𝑠)2

2𝜎𝑡
2𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 } (𝜎𝑡

2)
−(
𝑑𝑡
𝑠

2
+1)

𝑒𝑥𝑝 {−
𝐻𝑡
𝑠

2𝜎𝑡
2} 

= (𝜎𝑡
2)
−(
𝑑𝑡
𝑠

2
+
1
2
+1)

𝑒𝑥𝑝 {−
1

𝜎𝑡
2 (
𝐻𝑡
𝑠

2
+
(𝜃𝑡 − 𝐱𝑡𝛍𝑡

𝑠)2

2𝐱𝑡𝐌𝑡
𝑠𝐱𝑡

𝑇 )} 

Let 𝐴 =
𝐻𝑡
𝑠

2
+
(𝜃𝑡−𝐱𝑡𝛍𝑡

𝑠)2

2𝐱𝑡𝐌𝑡
𝑠𝐱𝑡
𝑇 , the marginal posterior distribution of 𝜃𝑡 can be obtained after 

integrating out 𝜎𝑡
2:  

𝑝(𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡) = ∫𝑝(𝜃𝑡 , 𝜎𝑡
2|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)𝑑𝜎𝑡

2 ∝ ∫(𝜎𝑡
2)
−(
𝑑𝑡
𝑠

2
+
1
2
+1)

 𝑒𝑥𝑝 {−
𝐴

𝜎𝑡
2} 𝑑𝜎𝑡

2 

= ∫
𝐴
𝑑𝑡
𝑠

2
+
1
2

Γ (
𝑑𝑡
𝑠

2 +
1
2)

(𝜎𝑡
2)
−(
𝑑𝑡
𝑠

2
+
1
2
+1)
 𝑒𝑥𝑝 {−

𝐴

𝜎𝑡
2}𝑑𝜎𝑡

2
Γ (
𝑑𝑡
𝑠

2 +
1
2)

𝐴
𝑑𝑡
𝑠

2
+
1
2

∝ (1 +
1

𝑑𝑡
𝑠

(𝜃𝑡 − 𝐱𝑡𝛍𝑡
𝑠)2

𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇
)

−(
𝑑𝑡
𝑠+1
2

)

 

Therefore (𝜃𝑡|𝜏𝑡 = 𝑠, 𝐲𝑠:𝑡)~𝑡 (𝐱𝑡𝛍𝑡
𝑠,
𝐻𝑡
𝑠

𝑑𝑡
𝑠 𝐱𝑡𝐌𝑡

𝑠𝐱𝑡
𝑇 , 𝑑𝑡

𝑠). 
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APPENDIX G. CALCULATION OF 𝑃(𝑠, 𝑡) IN SECTION 3.2.3 

𝑃(𝑠, 𝑡) = ∫𝑝(𝐲𝑠:𝑡|𝜎𝑡
2, 𝛃𝑡)𝑝(𝜎𝑡

2)𝑝(𝛃𝑡|𝜎𝑡
2)𝑑𝜎𝑡

2𝑑𝛃𝑡 

= ∫

[
 
 
 (
𝛾
2)

𝑣
2

Γ (
𝑣
2)
 (𝜎𝑡

2)−
𝑣
2
−1𝑒

−
𝛾

2𝜎𝑡
2

]
 
 
 
{(2𝜋)−1|𝜎𝑡

2𝚺0|
−
1
2 𝑒𝑥𝑝 [−

(𝛃𝑡 − 𝛍0)
𝑻𝚺0

−1(𝛃𝑡 − 𝛍0)

2𝜎𝑡
2 ]}  

{(2𝜋)−
𝑡−𝑠+1
2 (𝜎𝑡

2)−
𝑡−𝑠+1
2 𝑒𝑥𝑝 [−

‖𝐲𝑠:𝑡 − (𝐗𝑡
𝑠𝛃𝑡)

𝑇‖2

2𝜎𝑡
2 ]} 𝑑𝜎𝑡

2𝑑𝛃𝑡 

= ∫
(
𝛾
2)

𝑣
2

Γ (
𝑣
2)
(2𝜋)−

𝑡−𝑠+3
2 (𝜎𝑡

2)−
𝑡−𝑠+𝑣+4

2 |𝚺0|
−
1
2 𝑒𝑥𝑝 {−

𝐻𝑡
𝑠

2𝜎𝑡
2} 

𝑒𝑥𝑝 {−
(𝛃𝑡 − 𝛍𝑡

𝑠)𝑇((𝐗𝑡
𝑠)𝑇𝐗𝑡

𝑠 + 𝚺0
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APPENDIX H. COMPLETE ODA RESULTS OF HMD AND KFSD FOR SHMM1 

– 8 IN SECTION 4.3.3 

HMD 

𝑝 SHMM1 SHMM2 SHMM3 SHMM4 SHMM5 SHMM6 SHMM7 SHMM8 Average 

0.1 64.04% 69.92% 78.98% 60.87% 55.92% 65.17% 62.04% 55.59% 64.07% 

0.5 62.79% 76.16% 86.98% 60.43% 60.67% 73.62% 76.70% 85.59% 72.87% 

1 60.95% 75.16% 86.82% 60.51% 60.37% 74.07% 77.37% 86.54% 72.72% 

5 47.40% 67.57% 80.47% 60.81% 64.88% 76.10% 82.67% 98.17% 72.26% 

10 37.48% 56.33% 69.90% 55.69% 64.50% 75.70% 92.62% 99.88% 69.01% 

20 29.43% 45.22% 61.55% 47.77% 58.10% 73.72% 97.99% 100.00% 64.22% 

30 26.05% 41.12% 57.04% 46.10% 55.02% 68.39% 99.19% 100.00% 61.61% 

40 24.39% 37.42% 54.70% 44.15% 54.40% 65.27% 98.69% 100.00% 59.88% 

50 24.14% 35.05% 49.47% 41.65% 53.15% 63.44% 98.69% 100.00% 58.20% 

60 22.88% 33.86% 47.14% 41.95% 51.90% 63.10% 98.69% 100.00% 57.44% 

70 22.21% 33.99% 44.50% 41.12% 51.90% 62.60% 98.44% 100.00% 56.85% 

80 21.38% 32.96% 42.85% 39.12% 50.65% 61.54% 98.44% 100.00% 55.87% 

90 20.88% 32.38% 39.76% 39.25% 49.90% 60.17% 98.24% 100.00% 55.07% 

100 20.63% 31.59% 38.76% 38.72% 48.15% 58.50% 98.24% 100.00% 54.32% 

Overall 34.62% 47.77% 59.92% 48.44% 55.68% 67.24% 91.29% 94.70% 62.46% 

KFSD 

0.1 51.05% 57.82% 63.13% 51.17% 45.70% 51.34% 45.79% 30.12% 49.51% 

0.5 63.29% 75.66% 79.48% 60.29% 58.33% 68.54% 71.79% 74.79% 69.02% 

1 63.79% 77.36% 87.48% 60.79% 60.42% 73.29% 75.70% 86.12% 73.12% 

5 58.66% 74.74% 85.90% 62.26% 61.62% 75.90% 77.96% 91.72% 73.60% 

10 49.18% 69.51% 84.90% 62.55% 63.35% 77.32% 80.25% 97.02% 73.01% 

20 41.88% 63.92% 74.36% 57.64% 66.68% 76.59% 90.25% 99.50% 71.35% 

30 37.48% 55.29% 69.85% 54.19% 62.97% 74.99% 94.01% 99.88% 68.58% 

40 33.08% 50.87% 65.14% 51.35% 59.27% 73.30% 96.00% 99.88% 66.11% 

50 30.40% 47.55% 62.05% 47.99% 56.85% 70.37% 97.37% 99.88% 64.06% 

60 28.15% 43.78% 59.90% 46.00% 53.78% 68.87% 98.46% 99.88% 62.35% 

70 26.45% 42.37% 58.32% 44.89% 52.95% 64.85% 98.37% 99.88% 61.01% 

80 24.45% 39.41% 54.95% 43.89% 49.72% 60.90% 97.06% 99.42% 58.72% 

90 23.50% 36.52% 50.73% 41.19% 47.38% 58.08% 95.21% 97.82% 56.30% 

100 20.46% 33.54% 38.60% 37.96% 42.73% 49.50% 84.76% 94.96% 50.32% 

Overall 39.42% 54.88% 66.77% 51.58% 55.84% 67.42% 85.93% 90.77% 64.08% 
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APPENDIX I. COMPLETE ODA RESULTS OF HMD AND KFSD FOR LOMM1 

– 4 IN SECTION 4.3.3 

HMD 

𝑝 LOMM1 LOMM2 LOMM3 LOMM4 Average 

0.1 63.55% 88.33% 99.86% 100.00% 87.94% 

0.5 72.13% 93.73% 100.00% 100.00% 91.47% 

1 72.67% 95.67% 100.00% 100.00% 92.08% 

5 81.65% 98.57% 100.00% 100.00% 95.05% 

10 90.18% 99.02% 100.00% 100.00% 97.30% 

20 97.35% 99.58% 100.00% 100.00% 99.23% 

30 99.75% 100.00% 100.00% 100.00% 99.94% 

40 100.00% 100.00% 100.00% 100.00% 100.00% 

50 100.00% 100.00% 100.00% 100.00% 100.00% 

60 100.00% 100.00% 100.00% 100.00% 100.00% 

70 100.00% 100.00% 100.00% 100.00% 100.00% 

80 100.00% 100.00% 100.00% 100.00% 100.00% 

90 100.00% 100.00% 100.00% 100.00% 100.00% 

100 100.00% 100.00% 100.00% 100.00% 100.00% 

Overall 91.23% 98.21% 99.99% 100.00% 97.36% 

KFSD 

0.1 45.35% 80.35% 99.86% 99.68% 81.31% 

0.5 64.80% 82.40% 99.86% 99.80% 86.71% 

1 67.63% 84.68% 99.86% 100.00% 88.04% 

5 73.95% 91.70% 100.00% 100.00% 91.41% 

10 79.63% 95.10% 100.00% 100.00% 93.68% 

20 84.38% 97.70% 100.00% 100.00% 95.52% 

30 91.43% 98.57% 100.00% 100.00% 97.50% 

40 94.95% 99.02% 100.00% 100.00% 98.49% 

50 97.98% 99.02% 100.00% 100.00% 99.25% 

60 99.02% 99.02% 100.00% 100.00% 99.51% 

70 99.55% 99.58% 100.00% 100.00% 99.78% 

80 100.00% 100.00% 100.00% 100.00% 100.00% 

90 99.22% 100.00% 100.00% 100.00% 99.80% 

100 96.38% 100.00% 100.00% 100.00% 99.10% 

Overall 85.31% 94.80% 99.97% 99.96% 95.01% 
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APPENDIX J. COMPLETE ODA RESULTS OF WBD, LWBD, HMD AND KFSD  

FOR OUTLIER DETECTION IN SECTION 4.4 

𝑝 WBD LWBD HMD KFSD 

0.1 28.20% 5.60% 6.20% 5.60% 

0.5 49.80% 40.60% 30.20% 29.80% 

1 50.20% 40.00% 29.60% 30.40% 

5 47.20% 34.40% 21.00% 28.40% 

10 45.00% 25.60% 18.20% 24.60% 

20 43.00% 18.00% 15.80% 18.60% 

30 36.60% 17.40% 15.40% 16.60% 

40 23.80% 17.00% 14.80% 15.80% 

50 19.60% 12.60% 14.20% 15.60% 

60 17.20% 11.40% 13.80% 15.40% 

70 16.40% 9.20% 13.80% 14.80% 

80 15.60% 8.40% 13.80% 13.80% 

90 15.00% 8.40% 13.80% 12.60% 

100 13.80% 8.40% 13.80% 12.00% 
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